Advertisement for orthosearch.org.uk
Results 1 - 20 of 39
Results per page:
Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_19 | Pages 59 - 59
22 Nov 2024
Peterlin AA Gottlieb H Birch JM Jensen LK
Full Access

Aim. The osteolytic process of osteomyelitis is, according to textbooks, caused by increased osteoclast activity due to RANKL production by osteoblasts. However, recent findings contradict this theory. Therefore, the aim was to investigate, in a porcine osteomyelitis model, how osteolysis is affected by massive inflammation and RANKL blocking, respectively. In parallel, patients with chronic osteomyelitis, diabetes, foot osteomyelitis, and fracture related infections (FRI) were included for advanced histological analysis of osteolysis. Methods. In pigs, a tibial implant cavity was created and inoculated with 10. 4. CFU of Staphylococcus aureus: Group A (n=7). Group B (n=7); + 1cm. 3. spongostan into the cavity. Group C (n=4); + systemic Denosumab treatment. Spongostan was used as an avascular material to support bacterial growth and thus increase the inflammatory response. Denosumab treatment was administrated to suppress osteoclast activity by RANKL inhibition (as in osteoporotic patients). The volume of osteolysis was accessed by CT scans. Immunohistochemistry with antibodies towards Cathepsin K was used to identify osteoclasts within the bone lesions. Briefly, the number of Cathepsin K positive cells, i.e., both precursors and bone resorbing osteoclasts, respectively, were counted in 10 high power fields (400x). In total, 50 bone infection patients were included (Herlev Hospital). From each patient five parried samples were taken for histology and microbiology, respectively. Histopathology, CT osteolysis volume estimation, and molecular expression of osteoclasts and inflammatory markers are ongoing. One FRI patient was osteoporotic and treated with Denosumab for 6 years. Results. All pigs were confirmed infected in the implant cavity. The volume (2.41 ± 1.29cm. 3. ) of osteolysis was significantly increased in the spongostan group in comparison to Group A (1.24 ± 0.59 cm. 3. ) (p=0.04). Thereby, the spongostan group had bacteria deeper into the bone from the inoculation point. Sufficient Denosumab treatment, i.e. reduced serum Ca was seen in 3 pigs. None of the Denosumab treated pigs showed reduced osteolysis in comparison to Group A (1.42 ± 0.63 cm. 3. ). The Cathepsin K score of Group C was 17 (15-23 IQR) of precursor osteoclasts and 2 (0-2 IQR) of osteoclasts in Howship lacunae. The Denosumab treated patient showed substantial osteolysis and histological analysis confirmed acute inflammatory. Conclusions. Application of spongostan, i.e., bacterial host optimization and massive inflammation promotes osteolysis and local bacterial dissemination. Osteoclast blocking with Denosumab showed no impact on osteolysis. Elucidation of the pathophysiology causing bone loss in osteomyelitis is fundamental. However, the widely accepted osteoclast-based theory might not be the only relevant


Bone & Joint Research
Vol. 13, Issue 8 | Pages 411 - 426
28 Aug 2024
Liu D Wang K Wang J Cao F Tao L

Aims. This study explored the shared genetic traits and molecular interactions between postmenopausal osteoporosis (POMP) and sarcopenia, both of which substantially degrade elderly health and quality of life. We hypothesized that these motor system diseases overlap in pathophysiology and regulatory mechanisms. Methods. We analyzed microarray data from the Gene Expression Omnibus (GEO) database using weighted gene co-expression network analysis (WGCNA), machine learning, and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis to identify common genetic factors between POMP and sarcopenia. Further validation was done via differential gene expression in a new cohort. Single-cell analysis identified high expression cell subsets, with mononuclear macrophages in osteoporosis and muscle stem cells in sarcopenia, among others. A competitive endogenous RNA network suggested regulatory elements for these genes. Results. Signal transducer and activator of transcription 3 (STAT3) was notably expressed in both conditions. Single-cell analysis pinpointed specific cells with high STAT3 expression, and microRNA (miRNA)-125a-5p emerged as a potential regulator. Experiments confirmed the crucial role of STAT3 in osteoclast differentiation and muscle proliferation. Conclusion. STAT3 has emerged as a key gene in both POMP and sarcopenia. This insight positions STAT3 as a potential common therapeutic target, possibly improving management strategies for these age-related diseases. Cite this article: Bone Joint Res 2024;13(8):411–426


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_7 | Pages 65 - 65
1 Jul 2020
Wilkinson JM Gartland A Morell D Shah K Sudsok P
Full Access

Local and systemic concentrations of cobalt (Co) and chromium (Cr) ions may be elevated in patients with accelerated tribo-corrosion at prosthesis bearing surfaces and modular taper junctions. Previous studies by us and others have shown that exposure to these metals negatively affect the viability and function of osteoblasts and osteoclasts in vitro, with implications for bone health. More recently, we have observed an increase in total bone mineral density and reduced bone turnover (TRAP5b and osteocalcin) in patients with well-functioning metal-on-metal hip resurfacing (MOMHR). Here, we provide data to support the hypothesis that osteoclast differentiation and function is altered in this patient population, and that this effect is transferrable through their serum. Patients with well-functioning MOMHR (n=18) at median follow-up of 8 years were individually matched for gender, age and time-since-surgery to a low-exposure group consisting of patients with metal-on-polyethylene total hip arthroplasty (THA). The median circulating concentrations of Co and Cr for the MOMHR group were 2.53µg/L and 2.5µg/L respectively, compared to 0.02µg/L and 0.03µg/L for the THA group. Monocyte fraction of peripheral blood was isolated from these patients, seeded onto dentine wafers and differentiated into osteoclasts using media supplemented with RANKL and M-CSF (osteoclastogenic media, OM). Cultures were monitored for the onset of resorption, following which they were treated with OM, autologous serum or serum from the other individual within the matched MOMHR - THA pair, all supplemented with RANKL and M-CSF. At the end of the culture, cells were TRAP stained and quantified for total osteoclast number, number of resorbing osteoclasts and percentage resorption using the CellD Software Package (Olympus, Southend-on-Sea, U.K.). For cells differentiated in osteoclastogenic media, the resorbing ability of osteoclasts derived from MOMHR patients was reduced by 30% (P=0.046) compared to THA. Correlation analyses showed that chronic exposure to Co and Cr trends towards negative association with resorption ability of these osteoclasts (r = −0.3, P=0.06). Furthermore, the resorbing ability of osteoclasts generated from MOMHR patients and differentiated in autologous serum was reduced 33% (p < 0 .0001), whilst matched THA serum caused a smaller reduction of 14% (p < 0 .01). When cells derived from THA patients were differentiated in autologous serum, the resorbing ability of osteoclasts was similarly reduced by 35% (p < 0 .0001), whilst the matched MOMHR serum also caused a reduction of 21% (p < 0 .0001). Reduced osteoclastogenic response of precursor cells from patients with higher circulating Co and Cr suggests an inherent change in their potential to differentiate into functional osteoclasts. The data also suggests that functional response of mature osteoclasts generated from patient precursor cells are dependent on the prior systemic metal concentrations and the presence of higher circulating CoCr in patients with MOMHR. These effects are modest, but may explain the subtle increase in systemic bone mineral density and decreased bone turnover observed in patients after 8 years exposure compared to age, sex, and exposure-time matched patients who received a conventional THA


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 92 - 92
1 Jul 2020
Niedermair T Straub R Schirner S Seebröker R Grässel S
Full Access

Previous studies have described an age-dependent distortion of bone microarchitecture for α-CGRP-deficient mice (3). In addition, we observed changes in cell survival and activity of osteoblasts and osteoclasts isolated from young wildtype (WT) mice when stimulated with α-CGRP whereas loss of α-CGRP showed only little effects on bone cell metabolism of cells isolated from young α-CGRP-deficient mice. We assume that aging processes differently affect bone cell metabolism in the absence and presence of α-CGRP. To further explore this hypothesis, we investigated and compared cell metabolism of osteoblasts and bone marrow derived macrophages (BMM)/osteoclast cultures isolated from young (8–12 weeks) and old (9 month) α-CGRP-deficient mice and age matched WT controls. Isolation/differentiation of bone marrow macrophages (BMM, for 5 days) to osteoclasts and osteoblast-like cells (for 7/14/21 days) from young (8–12 weeks) and old (9 month) female α-CGRP−/− and WT control (both C57Bl/6J) mice according to established protocols. We analyzed cell migration of osteoblast-like cells out of femoral bone chips (crystal violet staining), proliferation (BrdU incorporation) and caspase 3/7-activity (apoptosis rate). Alkaline phosphatase (ALP) activity reflects osteoblast bone formation activity and counting of multinucleated (≥ 3 nuclei), TRAP (tartrate resistant acid phosphatase) stained osteoclasts reflects osteoclast differentiation capacity. We counted reduced numbers of BMM from young α-CGRP−/− mice after initial seeding compared to young WT controls but we found no differences between old α-CGRP−/− mice and age-matched controls. Total BMM number was higher in old compared to young animals. Migration of osteoblast-like cells out of bone chips was comparable in both, young and old α-CGRP−/− and WT mice, but number of osteoblast-like cells was lower in old compared to young animals. Proliferation of old α-CGRP−/− BMM was higher when compared to age-matched WT whereas proliferation of old α-CGRP−/− osteoblasts after 21 days of osteogenic differentiation was lower. No differences in bone cell proliferation was detected between young α-CGRP−/− and age-machted WT mice. Caspase 3/7 activity of bone cells from young as well as old α-CGRP−/− mice was comparable to age-matched controls. Number of TRAP-positive multinucleated osteoclasts from young α-CGRP−/− mice was by trend higher compared to age-matched WT whereas no difference was observed in osteoclast cultures from old α-CGRP−/− mice and old WT. ALP activity, as a marker for bone formation activity, was comparable in young WT and α-CGRP−/− osteoblasts throughout all time points whereas ALP activity was strongly reduced in old α-CGRP−/− osteoblasts after 21 days of osteogenic differentiation compared to age-matched WT. Our data indicate that loss of α-CGRP results in a reduction of bone formation rate in older individuals caused by lower proliferation and reduced activity of osteogenic cells but has no profound effects on bone resorption rate. We suggest that the osteopenic bone phenotype described in aged α-CGRP-deficient mice could be due to an increase of dysfunctional matured osteoblasts during aging resulting in impaired bone formation


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 112 - 112
23 Feb 2023
Deng Y Zhang D Smith P Li R
Full Access

Hip and knee arthroplasty (HKA) are two of the most successful orthopaedic procedures. However, one major complication necessitating revision surgery is osteolysis causing aseptic loosening of the prosthesis. JAK-STAT has been demonstrated to influence bone metabolism and can be regulated by microRNA (miRNA). Adult patients with osteolysis or aseptic loosening undergoing revision HKA were recruited. Age and gender matched patients undergoing primary hip or knee arthroplasty were our controls. Samples of bone, tissue and blood were collected and RNA isolation was performed. The best quality samples were used for RNA-sequencing. Data analysis was performed using RStudio and Galaxy to identify differentially expressed genes. Western blotting of IL6 was used to confirm protein expression. Five circulating miRNA were identified which had 10 differentially expressed genes in bone and 11 differentially expressed genes in tissue related to the JAK-STAT pathway. IL6 in bone and EpoR in bone were highly significant and IL6 in tissue, MPL in bone, SOCS3 in tissue, JAK3 in bone and SPRED1 in bone were borderline significant. Western blot results demonstrated up-expression of IL6 in bone tissue of revision patients. Periprosthetic osteolysis and aseptic loosening can be attributed to miRNA regulation of the JAK-STAT pathway in osteoblasts and osteoclasts, leading to increased bone resorption. These findings can be used for further experiments to determine utility in the clinical setting for identifying diagnostic markers or therapeutic targets


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_12 | Pages 18 - 18
1 Dec 2022
Taha M Hadden W Ibrahim M Abdelbary H
Full Access

Prosthetic joint infection (PJI) is a complex disease that causes significant damage to the peri-implant tissue. Developing an animal model that is clinically relevant in depicting this disease process is an important step towards developing novel successful therapies. In this study, we have performed a thorough histologic analysis of peri-implant tissue harvested post Staphylococcus aureus (S. aureus) infection of a cemented 3D-printed titanium hip implant in rats. Sprague-Dawley rats underwent left hip cemented 3D-printed titanium hemiarthroplasty via posterior approach under general anesthesia. Four surgeries were performed for the control group and another four for the infected group. The hip joint was inoculated with 5×10. 9. CFU/mL of S. aureus Xen36 prior to capsule closure. The animals were scarified 3 weeks after infection. The femur was harvested and underwent micro-CT and histologic analysis. Hematoxylin and eosin (H&E), as well as Masson's trichrome (MT) stains were performed. Immunohistochemistry (IHC) using rabbit antibody for S. aureus was also used to localize bacterial presence within femur and acetabulum tissue . The histologic analysis revealed strong resemblance to tissue changes in the clinical setting of chronic PJI. IHC demonstrated the extent of bacterial spread within the peri-implant tissue away from the site of infection. The H&E and MT stains showed 5 main features in infected bone: 1) increased PMNs, 2) fibrovascular inflammation, 3) bone necrosis, and 4) increased osteoclasts 5) fibrosis of muscular tissue and cartilage. Micro CT data showed significantly more osteolysis present around the infected prosthesis compared to control (surgery with no infection). This is the first clinically relevant PJI animal model with detailed histologic analysis that strongly resembles the clinical tissue pathology of chronic PJI. This model can provide a better understanding of how various PJI therapies can halt or reverse peri-implant tissue damage caused by infection


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_7 | Pages 59 - 59
1 Jul 2020
Qiu H Cheng T Chim SM Zhu S Xu H Qin A Wang C Teguh D Zhang G Tickner J Yao F Vrielink A Smithers L Pavlos N Xu J
Full Access

Bone is a connective tissue that undergoes constant remodeling. Any disturbances during this process may result in undesired pathological conditions. A single nucleotide substitution (596T-A) in exon eight which leads to a M199K mutation in human RANKL was found to cause osteoclast-poor autosomal recessive osteopetrosis (ARO). Patients with ARO cannot be cured by hematopoietic stem cell transplantation and, without proper treatments, will die in their early age. To date, how this mutation alters RANKL function has not been characterized. We thus hypothesized that hRANKL M199 residue is a structural determinant for normal RANKL-RANK interaction and osteoclast differentiation. By sharing our findings, we aim to achieve an improved clinical outcome in treating bone-related diseases such as osteoporosis, ARO and osteoarthritis. Site-directed mutagenesis was employed to create three rat RANKL mutants, replacing the methionine 200 (human M199 equivalent residue) with either lysine (M200K), alanine (M200A) or glutamic acid (M200E). Recombinant proteins were subsequently purified through affinity chromatography and visualized by Coomassie blue staining and western blot. MTS was carried out before osteoclastogenesis assay in vitro to measure the cellular toxicity. Bone resorption pit assay, immuno-fluorescent staining, luciferase reporter assay, RT-PCR, western blot and calcium oscillation detection were also conducted to explore the biological effect of rRANKL mutants. Computational modeling, thermal Shift Assay, western blot and protein binding affinity experiments were later carried out for structural analyses. rRANKL mutants M200K/A/E showed a drastically reduced ability to induce osteoclast formation and did not demonstrate features of competitive inhibition against wild-type rRANKL. These mutants are all incapable of supporting osteoclastic polarization and bone resorption or activating RANKL-induced osteoclast marker gene transcription. Consistently, they were unable to induce calcium flux, and also showed a diminished induction of IκBa degradation and activation of NF-kB and NFATc1 transcriptional activity. Furthermore, the transcriptional activation of the antioxidant response element (ARE) crucial in modulating oxidative stress and providing cytoprotection was also unresponsive to stimulation with rM200s. Structural analyses showed that rM200 is located in a hydrophobic pocket critical for protein folding. Thermal shift and western blot assays suggested that rM200 mutants formed unstructured proteins, with disturbed trimerisation and the loss of affinity to its intrinsic receptors RANK and OPG. Taken together, we first demonstrates the underlying cause of M199-meidated ARO in a cellular and molecular level by establishing a phenotype in BMMs similar to observed in human samples. Further investigation hints the structural significance of a hydrophobic pocket within the TNF-like region. Combined with pharmaceutical studies on small-molecule drugs, this finding may represent a therapeutic target motif for future development of anti-resorptive treatments


The Bone & Joint Journal
Vol. 95-B, Issue 8 | Pages 1022 - 1026
1 Aug 2013
O’Neill SC Queally JM Devitt BM Doran PP O’Byrne JM

Peri-prosthetic osteolysis and subsequent aseptic loosening is the most common reason for revising total hip replacements. Wear particles originating from the prosthetic components interact with multiple cell types in the peri-prosthetic region resulting in an inflammatory process that ultimately leads to peri-prosthetic bone loss. These cells include macrophages, osteoclasts, osteoblasts and fibroblasts. The majority of research in peri-prosthetic osteolysis has concentrated on the role played by osteoclasts and macrophages. The purpose of this review is to assess the role of the osteoblast in peri-prosthetic osteolysis. In peri-prosthetic osteolysis, wear particles may affect osteoblasts and contribute to the osteolytic process by two mechanisms. First, particles and metallic ions have been shown to inhibit the osteoblast in terms of its ability to secrete mineralised bone matrix, by reducing calcium deposition, alkaline phosphatase activity and its ability to proliferate. Secondly, particles and metallic ions have been shown to stimulate osteoblasts to produce pro inflammatory mediators in vitro. In vivo, these mediators have the potential to attract pro-inflammatory cells to the peri-prosthetic area and stimulate osteoclasts to absorb bone. Further research is needed to fully define the role of the osteoblast in peri-prosthetic osteolysis and to explore its potential role as a therapeutic target in this condition. Cite this article: Bone Joint J 2013;95-B:1021–5


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_2 | Pages 90 - 90
10 Feb 2023
Burn P
Full Access

Polyimide (MP-1, MMATech, Haifa, Israel), is a high performance aerospace thermoplastic used for its lubricity, stability, inertness and radiation resistance. A wear resistant thin robust bearing is needed for total hip arthroplasty (THR). After independent laboratory testing, in 2006, the author used the material as a bearing in two Reflection (Smith and Nephew, USA) hip surgeries. The first, a revision for polyethylene wear, survives with no evidence of wear, noise, new osteolysis or complications related to the MP-1 bearing after 16 yrs. The second donated his asymptomatic MP-1 hip at 6.5yrs for post-mortem examination. There were no osteoclasts, cellular reaction bland in contrast to that of polyethylene. In 2013 a clinical study with ethical committee approval was started using a Biolox Delta (Ceramtec, Germany) head against a polyimide liner in 97 patients. MMATech sold all liners, irradiated: steam 52:45. Sixteen were re-machined in New Zealand. Acetabular shells were Delta PF (LIMA, Italy). The liner locked by taper. The cohort consisted of 46:51 M:F, and ages 43 to 85, mean 65. Ten received cemented stems. For contralateral surgery, a ceramic or polyethylene liner was used. Initial patients were lower demand, later, more active patients, mountain-biking and running. All patients have on-going follow up, including MP-1 liner revision cases. There has been no measurable wear, or osteolysis around the acetabular components using weight-bearing radiographs. Squeaking within the first 6 weeks was noted in 39 number of cases and subtle increase in palpable friction, (passive rotation at 50 degrees flexion), but then disappeared. There were 6 revisions, four of which were related to cementless Stemsys implants (Evolutis, Italy) fixed distally with proximal linear lucencies in Gruen zones 1 and 7, and 2 and 6. No shells were revised and MP-1 liners were routinely changed to ceramic or polyethylene. The liners showed no head contact at the apex, with highly polished contact areas. There were no deep or superficial infections, but one traumatic anterior dislocation at 7 years associated with 5 mm subsidence of a non-collared stem. The initial squeaking and increased friction was due to the engineering of the liner / shell composite as implanted, not allowing adequate clearance for fluid film lubrication and contributed to by shell distortion during impaction. The revised bearings were “equatorial” rather than polar, and with lack of wear or creep this never fully resolved. Where the clearance was better, function was normal. The “slow” utilization was due to my ongoing concern with clearances not being correct. The revision of 4 Stemsys stems, tribology issues may have contributed, but non “MP-1” / Stemsys combinations outside this study have shown the same response, thought to be due to de-bonding of the hydroxyapatite coating. With correct engineering and clearances, a 3.6 mm thick MP-1 bearing, a surface Ra<0.5, steam sterilized, shows no appreciable wear, and with confidence, can be used as a high performance THR bearing


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_3 | Pages 3 - 3
1 Mar 2021
Ge S Hadidi L Comeau-Gauthier M Ramirez-GarciaLuna J Merle G Harvey E
Full Access

Fracture non-union can be as high as 20% in certain clinical scenarios and has a high associated socioeconomic burden. Boron has been shown to regulate the Wnt/β-catenin pathway in other bodily processes. However, this pathway is also critical for bone healing. Here we aim to demonstrate that the local delivery of boric acid can accelerate bone healing, as well as to elucidate how boric acid, via the regulationtheWnt/β-catenin pathway, impacts theosteogenic response of bone-derived osteoclasts and osteoblasts during each phase of bone repair. Bilateral femoral cortical defects were created in 32 skeletally mature C57 mice. On the experimental side, boric acid (8mg/kg concentration) was injected locally at the defect site whereas on the control side, saline was used. Mice were euthanized at 7, 14, and 28 days. MicroCT was used to quantify bone regeneration at the defect. Histological staining for ALP and TRAP was used to quantify osteoblast and osteoclast activity respectively. Immunohistochemical antibodies, β-catenin and CD34 were used to quantify active β-catenin levels and angiogenesis respectively. Sclerostin and GSK3β were also quantified and are both inhibitors of the wnt signaling pathway via degradation and inactivation of β-catenin. The boron group exhibited higher bone volume and trabecular thickness at the defect site by 28 days on microCT. ALP activity was significantly higher in boron group at 7 days whereas boron had no effect on TRAP activity. Additionally, CD34 staining revealed increased angiogenesis at 14 days in boron treated groups. β-catenin activity on immunohistochemistry was significantly higher in the boron group at 7 days, GSK3β was significantly higher in the boron group at 14 days and Sclerostin was significantly higher in the boron group at 28 days. Boron appears to increase osteoblast activity at the earlier phases of healing. The corresponding early increase in β-catenin along with ALP likely supports that boron increases osteoblast activity via the wnt/β-catenin pathway. Increased angiogenesis at 14 days could be a separate mechanism increasing bone formation independent of wnt/β-catenin activation. Neither GSK3β or Sclerostin levels correlated with β-catenin activity therefore boron likely increases β-catenin through a mechanism independent of both GSK3β and Sclerostin. The addition of this inexpensive and widely available ion could potentially become a non-invasive, cost-effective treatment modality to augment fracture healing and decrease non-union rates in high risk patients


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_20 | Pages 14 - 14
1 Nov 2016
Ma Y Dalmia S Gao P Young J Liu C You L
Full Access

Bone metastases are common and severe complications of cancers. It is estimated to occur in 65–75% of breast and prostate cancer patients and cause 80% of breast cancer-related deaths. Metastasised cancer cells have devastating impacts on bone due to their ability to alter bone remodeling by interacting with osteoblasts and osteoclasts. Exercise, often used as an intervention for cancer patients, regulates bone remodeling via osteocytes. Therefore, we hypothesise that bone mechanical loading may regulate bone metastases via osteocytes. This provides novel insights into the impact of exercises on bone metastases. It will assist in designing cancer intervention programs that lowers the risk for bone metastases. Investigating the mechanisms for the observed effects may also identify potential drug targets. MLO-Y4 osteocyte-like cells (gift of Dr. Bonewald, University of Missouri-Kansas City) on glass slides were placed in flow chambers and subjected to oscillatory fluid flow (1Pa; 1Hz; 2 hours). Media were extracted (conditioned media; CM) post-flow. RAW264.7 osteoclast precursors were conditioned in MLO-Y4 CM for 7 days. Migration of MDA-MB-231 breast cancer cells and PC3 prostate cancer cells towards CM was assayed using Transwell. Viability, apoptosis, and proliferation of the cancer cells in the CM were measured with Fixable Viability Dye eFluor 450, APOPercentage, and BrDu, respectively. P-values were calculated using Student's t-test. Significantly more MDA-MB-231 and PC3 cells migrated towards the CM from MLO-Y4 cells with exposure to flow in comparison to CM from MLO-Y4 cells not exposed to flow. The preferential migration is abolished with anti-VEGF antibodies. MDA-MB-231 cells apoptosis rate was slightly lower in CM from MLO-Y4 cells exposed to flow, while proliferation rate was slightly higher. The current data showed no difference in cancer cells viability and adhesion to collagen between any two groups. On the other hand, it was observed that less MDA-MB-231 cells migrated towards CM from RAW264.7 cells conditioned in CM from MLO-Y4 cells stimulated with flow in comparison to those conditioned in CM from MLO-Y4 cells not stimulated with flow. TRAP staining results confirmed that there were less differentiated osteoclasts when RAW264.7 cells were cultured in CM from MLO-Y4 cells exposed to flow. Overall, this study suggests that when only osteocytes and cancer cells are involved, osteocytes subjected to mechanical loading can promote metastases due to the increased secretion of VEGF. However, with the incorporation of osteoclasts, mechanical loading on osteocytes seems to reduce MDA-MB-231 cell migration. This is likely because osteocytes reduce osteoclastogenesis in response to mechanical stimulation, and osteoclasts have been shown to support cancer cells. Animal studies will also be conducted to verify the pro- or anti-metastatic effect of mechanical loading that is observed in the in vitro part of this study


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_17 | Pages 52 - 52
1 Dec 2018
Ferguson J Athanasou N McNally M
Full Access

Aim. This study describes the histologic changes seen with a gentamicin-eluting synthetic bone graft substitute (BGS)(1) in managing bone defects after resection of chronic osteomyelitis (cOM). Method. 154 patients with mean follow-up of 21.8 months (12–56) underwent treatment of cOM with an antibiotic-loaded BGS for defect filling. Nine patients had subsequent surgery, not related to infection recurrence, allowing biopsy of the implanted material. These biopsies were harvested between 19 days and two years after implantation, allowing a description of the material's remodelling over time. Samples were fixed in formalin and stained with haematoxylin-eosin. Immunohistochemistry, using an indirect immunoperoxidase technique, identified the osteocyte markers Dentine Matrix Protein-1 (DMP-1) and Podoplanin, the macrophage/osteoclast marker CD68, and the macrophage marker CD14. Results. The material was actively remodelled and was osteoconductive. There was evidence of osteoblast recruitment, leading to osteoid and intramembranous formation of woven and lamellar bone on the material's surface, seen most prominently in areas of well-vascularised fibrous tissue. Osteocytes in woven bone expressed the markers DMP-1 and Podoplanin. No cartilage or endochondral ossification was seen. There was a prominent (CD14+/ CD68+) macrophage response to the BSG and macrophages within reparative cellular and collagenous fibrous tissue. In biopsies taken between 4 and 5 months, there were bone trabeculae containing BGS of mainly woven but partly lamellar type. Giant cells on the surface of newly formed mineralised osteoid and woven bone expressed an osteoclast phenotype (CD68+/CD14-). In later biopsies (up to 2 years), larger bone trabeculae were seen more frequently within well-vascularised reparative fibrous tissue. The BGS was replaced with predominantly lamellar bone. One biopsy was taken from an extraosseous leak of BGS into the soft tissues, behind the distal tibia. The histology showed a heavy macrophage infiltrate, but notably no evidence of osteoid or bone formation in the material or surrounding soft tissues. Conclusion. There was clear evidence that this BGS is osteoconductive with first osteoid then woven and lamellar bone being formed. DMP-1 and podoplanin-expressing osteocytes present in woven and lamellar bone demonstrate osteoclastic bone remodelling. Increased lamellar bone was noted in later samples and bone formation was most prominent in well-vascularised areas. There was on-going remodelling of the material beyond one year. The BGS did not ossify in soft tissue. The hydroxyapatite scaffold in this material is probably responsible for its high osteoconductivity and potential to be transformed into bone


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_10 | Pages 37 - 37
1 Jun 2018
Dorr L
Full Access

Dorr bone type is both a qualitative and quantitative classification. Qualitatively on x-rays the cortical thickness determines the ABC type. The cortical thickness is best judged on a lateral x-ray and the focus is on the posterior cortex. In Type A bone it is a thick convex structure (posterior fin of bone) that can force the tip of the tapered implant anteriorly – which then displaces the femoral head posteriorly into relative retroversion. Fractures in DAA hips have had increased fractures in Type A bone because of the metaphyseal-diaphyseal mismatch (metaphysis is bigger than diaphysis in relation to stem size). Quantitatively, Type B bone has osteoclastic erosion of the posterior fin which proceeds from proximal to distal and is characterised by flattening of the fin, and erosive cysts in it from osteoclasts. A tapered stem works well in this bone type, and the bone cells respond positively. Type C bone has loss of the entire posterior fin (stove pipe bone), and the osteoblast function at a low level with dominance of osteoclasts. Type C is also progressive and is worse when both the lateral and AP views show a stove pipe shape. If just the lateral x-ray has thin cortices, and the AP has a tapered thickness of the cortex a non-cemented stem will work, but there is a higher risk for fracture because of weak bone. At surgery Type C bone has “mushy” cancellous bone compared to the hard structure of type A. Tapered stems have high risk for loosening because the diaphysis is bigger than the metaphysis (opposite of Type A). Fully coated rod type stems fix well, but have a high incidence of stress shielding. Cemented fixation is done by surgeons for Type C bone to avoid fracture, and insure a comfortable hip. The large size stem often required to fit Type C bone causes an adverse-stem-bone ratio which can cause chronic thigh pain. I cement patients over age 70 with Type C bone which is most common in women over that age


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXIII | Pages 125 - 125
1 May 2012
Nguyen H Gineyts E Wu A Cassady A Bennett M Morgan D Delmas P Forwood M
Full Access

It is not known if the radiation sterilisation dose (RSD) of 25 kGy affects mechanical properties and biocompability of allograft bone by alteration of collagen triple helix or cross-links. Our aim was to investigate the mechanical and biological performance, cross-links and degraded collagen content of irradiated bone allografts. Human femoral shafts were sectioned into cortical bone beams (40 × 4 × 2 mm) and irradiated at 0, 5, 10, 15, 20, and 25 kGy for three-point bending tests. Corresponding cortical bone slices were used for in vitro determination of macrophage activation, osteoblast proliferation and attachment, and osteoclast formation and fusion. Subsequently, irradiated cortical bone samples were hydrolised for determination of pyridinoline (PYD), deoxypyridinoline (DPD), and pentosidine (PEN) by high performance liquid chromatography (HPLC) and collagen degradation by the alpha chymotrypsin (ï. j. CT) method. Irradiation up to 25 kGy did not affect the elastic properties of cortical bone, but the modulus of toughness was decreased from 87% to 74% of controls when the gamma dose increased from 15 to 25 kGy. Macrophages activation, the proliferation and attachment of osteoblasts on irradiated bone was not affected. Osteoclast formation and fusion were less than 40% of controls when cultured on bone irradiated at 25 kGy, and 80% at 15 kGy. Increasing radiation dose did not significantly alter the content of PYR, DPD or PEN but increased the content of denatured collagen. Cortical allografts fragility increases at doses above 15 kGy. Decreased osteoclast viability at these doses suggests a reduction in the capacity for bone remodelling. These changes were not correlated with alterations in collagen cross-links but in degradation to the collagen secondary structure as evidenced by increased content of denatured collagen


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 75 - 75
1 Jul 2020
Algate K Cantley M Fitzsimmons T Paton S Wagner F Zannettino A Holson E Fairlie D Haynes D
Full Access

The inflammatory cascade associated with prosthetic implant wear debris, in addition to diseases such as rheumatoid arthritis and periodontitis, it is shown to drastically influence bone turnover in the local environment. Ultimately, this leads to enhanced osteoclastic resorption and the suppression of bone formation by osteoblasts causing implant failure, joint failure, and tooth loosening in the respective conditions if untreated. Regulation of this pathogenic bone metabolism can enhance bone integrity and the treatment bone loss. The current study used novel compounds that target a group of enzymes involved with the epigenetic regulation of gene expression and protein function, histone deacetylases (HDAC), to reduce the catabolism and improve the anabolism of bone material in vitro. Human osteoclasts were differentiated from peripheral blood monocytes and cultured over a 17 day period. In separate experiments, human osteoblasts were differentiated from human mesenchymal stem cells isolated from bone chips collected during bone marrow donations, and cultured over 21 days. In these assays, cells were exposed to the key inflammatory cytokine involved with the cascade of the abovementioned conditions, tumour necrosis factor-α (TNFα), to represent an inflammatory environment in vitro. Cells were then treated with HDAC inhibitors (HDACi) that target the individual isoforms previously shown to be altered in pathological bone loss conditions, HDAC-1, −2, −5 and −7. Analysis of bone turnover through dentine resorptive measurements and bone mineral deposition analyses were used to quantify the activity of bone cells. Immunohistochemistry of tartrate resistant acid phosphatase (TRAP), WST-assay and automated cell counting was used to assess cell formation, viability and proliferation rates. Real-time quantitative PCR was conducted to identify alterations in the expression of anti- and pro-inflammatory chemokines and cytokines, osteoclastic and osteoblastic factors, in addition to multiplex assays for the quantification of cytokine/chemokine release in cell supernatant in response to HDACi treatments in the presence or absence of TNFα. TNFα stimulated robust production of pro-inflammatory cytokines and chemokines by PBMCs (IL-1β, TNFα, MCP1 and MIP-1α) both at the mRNA and protein level (p < 0 .05). HDACi that target the isoforms HDAC-1 and −2 in combination significantly suppressed the expression or production of these inflammatory factors with greater efficacy than targeting these HDAC isoforms individually. Suppression of HDAC-5 and −7 had no effect on the inflammatory cascade induced by TNFα in monocytes. During osteoclastic differentiation, TNFα stimulated the size and number of active cells, increasing the bone destruction observed on dentine slices (p < 0 .05). Targeting HDAC-1 and −2 significantly reduced bone resorption through modulation of the expression of RANKL signalling factors (NFATc1, TRAF6, CatK, TRAP, and CTR) and fusion factors (DC-STAMP and β3-integerin). Conversely, the anabolic activity of osteoblasts was preserved with HDACi targeting HDAC-5 and −7, significantly increasing their mineralising capacity in the presence of TNFαthrough enhanced RUNX2, OCN and Coll-1a expression. These results identify the therapeutic potential of HDACi through epigenetic regulation of cell activity, critical to the processes of inflammatory bone destruction


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 101 - 101
1 Jul 2020
Comeau-Gauthier M Tarchala M Ramirez-GarciaLuna J Harvey E Merle G
Full Access

Bone regeneration includes a well-orchestrated series of biological events of bone induction and conduction. Among them, the Wnt/β-catenin signaling pathway is critical for bone regeneration. Being involved in several developmental processes, Wnt/β-catenin signaling must be safely targeted. There are currently only few specific therapeutic agents which are FDA-approved and already entered clinical trials. A published work has shown that Tideglusib, a selective and irreversible small molecule non-ATP-competitive glycogen synthase kinase 3-β(GSK-3β) inhibitor currently in trial for Alzheimer's patients, can promote tooth growth and repair cavities. [1]Despite some differences, they are some similarities between bone and tooth formation and we hypothesise that this new drug could represent a new avenue to stimulate bone healing. In this work, we locally delivered Tideglusib (GSK3β inhibitor) in the repair of femoral cortical window defects and investigated bone regeneration. A biodegradable FDA-approved collagen sponge was soaked in GSK-3βinhibitor solution or vehicle only (DMSO) and was implanted in 1 × 2 mm unicortical defects created in femora of 35 adult wild-type male mice. Bone defect repair on control and experimental (GSK-3βinhibitor) groups was assessed after 1 week (n=22), 2 weeks (n=24) and 4 weeks (n=24) with microCT and histological analysis foralkaline phosphatase (ALP, osteoblast activity), tartrate resistant acid phosphatase (TRAP, osteoclasts), and immunohistochemistry to confirm the activation of the Wnt/β-catenin pathway. Our results showed that Tideglusib significantly enhanced cortical bone bridging (20.6 ±2.3) when compared with the control (12.7 ±1.9, p=0.001). Activity of GSK-3β was effectively downregulated at day 7 and 14 resulting in a higher accumulation of active β-catenin at day 14 in experimental group (2.5±0.3) compared to the control (1.1±0.2, p=0.03). Furthermore, the onset of ALP activity appears earlier in the experimental group (day 14, 1.79±0.28), a level of activity never reached at any end-point by the control defects. At 4 weeks treatment, we observed a significant drop in ALP in the experimental group (0.47±0.05) compared to the control (1.01±0.19, p=0.02) and a decrease in osteoclast (experimental=1.32±0.36, control=2.23±0.67, p=0.04). Local downregulation of GSK-3β by tideglusib during bone defect repair resulted in significant increase in amount of new bone formation. The early upregulation of osteoblast activity is one explanation of bone healing augmentation. This is likely the effect of upregulation of β-catenin following pharmaceutical inhibition of GSK-3β since β-catenin activation is known to positively regulate osteoblasts, once committed to the osteoblast lineage. As a GSK-3β inhibitor, Tideglusib demonstrates a different mechanism of action compared with other GSK-3β antagonists as treatment was started immediately upon injury and did not interfere with precursor cells recruitment and commitment. This indicates that tideglusib could be used at the fracture site during the initial intraoperative internal fixation without the need for further surgery. This safe and FDA-approved drug could be used in prevention of non-union in patients presenting with high risk for fracture-healing complications


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 13 - 13
1 Jul 2020
Wildeman B Bormann N Beuttel E Pobloth A Duda GN
Full Access

Despite the increasing availability of bone grafting materials, the regeneration of large bone defects remains a challenge. Especially infection prevention while fostering regeneration is a crucial issue. Therefore, loading of grafting material with antibiotics for direct delivery to the site of need is desired. This study evaluates the concept of local delivery using in vitro and in vivo investigations. We aim at verifying safety and reliability of a perioperative enrichment procedure of demineralized bone matrix (DBM) with gentamicin. DBM (DBMputty, DIZG, Germany) was mixed with antibiotic using a syringe with an integrated mixing propeller (Medmix Systems, Switzerland). Gentamicin, as powder or solution, was mixed with DBM at different concentrations (25 −100 mg/g DBM), release and cytotoxicity was analyzed. For in vivo analysis, sterile drill hole defects (diameter: 6 mm, depth: 15 mm) were created in diaphyseal and metaphyseal bones of sheep (Pobloth et al. 2016). Defects (6 – 8 per group and time point) were filled with DBM or DBM enriched with gentamicin (50 mg/g DBM) or left untreated. After three and nine weeks, defect regeneration was analyzed by µCT and histology. The release experiments revealed a burst release of gentamicin from DBM independent of the used amount, the sampling strategy, or the formulation (powder or solution). Gentamicin was almost completely released after three days in all set-ups. Eluates showed an antimicrobial activity against S. aureus over at least three days. Eluates had no negative effect on viability and alkaline phosphatase activity of osteoblast-like cells (partially published Bormann et al. 2014). µCT and histology of the drill hole defects revealed a reduced bone formation with gentamicin loaded DBM. After nine weeks significantly less mineralized tissue was detectable in metaphyseal defects of the gentamicin group. Histological evaluation revealed new bone formation starting at the edges of the drill holes and growing into the center over time. The amount of DBM decreased over time due to the active removal by osteoclasts while osteoblasts formed new bone. Using this mixing procedure, loading of DBM was fast, reliable and possible during surgical setting. In vitro experiments revealed a burst and almost complete release after three days, antimicrobial activity and good biocompatibility of the eluates. Gentamicin/DBM concentration was in the range of clinically used antibiotic-loaded-cement for prophylaxis and treatment in joint replacement (Jiranek et al. 2006). The delayed healing seen in vivo was unexpected due to the good biocompatibility found in vitro. A reduced healing was also seen in spinal fusion where DBM was mixed with vancomycin (Shields et al. 2017), whereas DBM with gentamicin or DBM/bioactive glass with tobramycin had no negative effect on osteoinductivity or femur defect healing, respectively (Lewis et al. 2010, Shields et al. 2016). In conclusion, loading of DBM with gentamicin showed a proper antibiotic delivery over several days, covering the critical phase shortly after surgery. Due to the faster and complete release of the antibiotic compared to antibiotic loaded cement, the amount of antibiotic should be much lower in the DBM compared to cement


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_3 | Pages 61 - 61
1 Jan 2016
Muratoglu O Bichara D Malchau E Hylleholt N Cakmak S
Full Access

Introduction. UHMWPE particle-induced osteolysis is one of the major causes of arthroplasty revisions. Recent in vitro findings have suggested that UHMWPE wear particles containing vitamin-E (VE) may have reduced functional biologic activity and decreased potential to cause osteolysis (Bladed C. L. et al, JBMR B 2012 and 2013). This is of significant importance since VE-stabilized cross-linked UHMWPEs were recently introduced for clinical use, and there is no in vivo data determining the effects of wear debris. In this study we hypothesized that particles from VE-stabilized, radiation cross-linked UHMWPE (VE-UHMWPE) would cause reduced levels of osteolysis in a murine calvarial bone model when compared to virgin gamma irradiated cross-linked UHMWPE. Methodology. Study groups were the following: 1). Radiation cross-linked VE-UHMWPE (0.8% by weight) diffused after 100 kGy; 2). Radiation cross-linked virgin UHMWPE (virgin UHMWPE); 3). Sham controls. Particle generation and implantation: UHMWPE was sent to Bioengineering Solutions (Oak Park, IL) for particle generation. After IACUC approval, C57BL/6 mice (n=12 for each group) received equal amount of particulate debris (3mg) overlying the calvarium and were euthanized after 10 days. Micro-CT scans: High resolution micro-CT scans were performed using a set voltage of 70 kV and current of 70 µA. Topographical Grading Scale: Each calvarial bone was blindly scored using the following scale: 0=No osteolysis, defined as intact bone; 1=Minimal osteolysis, affecting 1/3 or less of the bone area; 2=Moderate osteolysis, affecting at least 2/3 of the bone area; 3=Severe osteolysis, defined as completely osteolytic bone. Histology: H&E and TRAP staining was done on tissue to confirm micro-CT findings and quantify osteoclasts. Statistical Analysis: Inter-rater analysis was done using Cohen's kappa analysis. An inter-rater coefficient >0.65 was considered as high inter-rater agreement. Comparison between groups was made using one-way ANOVA with post hoc Bonferroni correction for multiple comparisons. Correlations are reported as Spearman's rho. P-value<0.05 was considered statistically significant. Results. More than 83% of the VE-UHMWPE and more than 85% of the virgin UHMWPE particles measured less than 1 µm in mean particle size. There was a statistically significant greater level of osteolysis visualized on the topographical grading scale in calvaria implanted with virgin UHMWPE wear particles. Micro-CT findings were confirmed histologically (Fig. 1). A greater amount of inflammatory tissue overlaying the calvaria was observed in the virgin UHMWPE group when compared to both shams and VE-UHMWPE groups. Post hoc analysis revealed significant difference between VE-UHMWPE and virgin UHMWPE for the topographical osteolysis grading score (p=0.002) but no difference in osteoclast counts (p=0.293). Discussion and Conclusion. This is the first in vivo study reporting the effects of clinically-relevant UHMWPE particles generated from a VE-UHMWPE implant that is in current clinical use. These results suggest that VE-UHMWPE particles have reduced osteolysis potential in vivo when compared to virgin, highly cross-linked UHMWPE in a murine calvarial bone model. Arthroplasty procedures using VE-UHMWPE might be less susceptible to peri-prosthetic loosening caused by wear debris


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXIII | Pages 131 - 131
1 May 2012
Liu R Peacock L Mikulec K Morse A Schindeler A Little D
Full Access

Bone morphogenetic proteins (BMPs) are able to induce osteogenic differentiation in many cells, including muscle cells. However, the actual contribution of muscle cells to bone formation and repair is unclear. Our objective was to examine the capacity of myogenic cells to contribute to BMP-induced ectopic bone formation and fracture repair. Osteogenic gene expression was measured by quantitative PCR in osteoprogenitors, myoblasts, and fibroblasts following BMP-2 treatment. The MyoD-Cre x ROSA26R and MyoD-Cre x Z/AP mouse strains were used to track the fate of MyoD+ cells in vivo. In these double-transgenic mice, MyoD+ progenitors undergo a permanent recombination event to induce reporter gene expression. Ectopic bone was produced by the intramuscular implantation of BMP-7. Closed tibial fractures and open tibial fractures with periosteal stripping were also performed. Cellular contribution was tracked at one, two and three week time points by histological staining. Osteoprogenitors and myoblasts exhibited comparable expression of early and late bone markers; in contrast bone marker expression was considerably less in fibroblasts. The sensitivity of cells to BMP-2 correlated with the expression of BMP receptor-1a (Bmpr1a). Pilot experiments using the MyoD-Cre x Rosa26R mice identified a contribution by MyoD expressing cells in BMP-induced ectopic bone formation. However, false positive LacZ staining in osteoclasts led us to seek alternative systems such as the MyoD-cre x Z/AP mice that have negligible background staining. Initially, a minor contribution from MyoD expressing cells was noted in the ectopic bones in the MyoD-cre x Z/AP mice, but without false positive osteoclast staining. Soft tissue trauma usually precedes the formation of ectopic bone. Hence, to mimic the clinical condition more precisely, physical injury to the muscle was performed. Traumatising the muscle two days prior to BMP-7 implantation: (1) induced MyoD expression in quiescent satellite cells; (2) increased ectopic bone formation; and (3) greatly enhanced the number of MyoD positive cells in the ectopic bone. In open tibial fractures the majority of the initial callus was MyoD+ indicating a significant contribution by myogenic cells. In contrast, closed fractures with the periosteum intact had a negligible myogenic contribution. Myoblasts but not fibroblasts were highly responsive to BMP stimulation and this was associated with BMP receptor expression. Our transgenic mouse models demonstrate for the first time that muscle progenitors can significantly contribute to ectopic bone formation and fracture repair. This may have translational applications for clinical orthopaedic therapies


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_20 | Pages 10 - 10
1 Nov 2016
Morcos M Al-Jallad H Millan J Hamdy R Murshed M
Full Access

Bone fracture healing is regulated by a series of complex physicochemical and biochemical processes. One of these processes is bone mineralisation, which is vital for normal bone development, its biomechanical competence and fracture healing. Phosphatase, orphan 1 (PHOSPHO1), a bone-specific phosphatase, has been shown to be involved in the mineralisation of the extracellular matrix in bone. It can hydrolyse phosphoethanolamine and phosphocholine to generate inorganic phosphate, which is crucial for bone mineralisation. Phospho1−/− mice show hypomineralised bone and spontaneous fractures. All these data led to the hypothesis that PHOSPHO1 is essential for bone mineralisation and its structural integrity. However, no study to our knowledge has shown the effects of PHOSPHO1 on bone fracture healing. In this study, we examined how PHOSPHO1-deficiency might affect the healing and quality of the fractured bones in Phospho1−/− mice. We performed rodded immobilised fracture surgery on the right tibia of control wild type (WT) and Phospho1−/− mice (n=16 for each group) at eight weeks of age. Bone was left to heal for four weeks and then the mice were euthanised and their tibias were analysed using Faxitron X-ray analyses, microCT, histology and histomorphometry and three-point bending test. Our microCT and X-ray analyses revealed that the appearance of the callus and several static parameters of bone remodeling at the fracture sites were markedly different in WT and Phospho1−/− mice. We observed a significant increase of BS/BV, BS/TV and trabecular number and decrease in trabecular thickness and separation in Phospho1−/− callus in comparison to the WT callus. These observations were further confirmed by histomorphometry. The increased bone mass at the fracture sites of Phospho1−/− mice appears to be caused by increased bone formation as there is a significant increase of osteoblast number, while osteoclast numbers remained unchanged. There was a marked increase of osteoid volume over bone volume (OV/BV) in the Phospho−/− callus. Interestingly, the amount of osteoid was markedly higher at the fracture sites than that of normal trabecular bones. The three-point bending test showed that Phospho 1 −/− fractured bone had more of an elastic characteristics than the WT bone as they underwent more of a plastic deformity before the breakage point compare to the WT. Our work suggests that PHOSPHO1 plays an integral role during bone fracture repair. PHOSPHO1 can be an interesting target to improve the fracture healing process