Dorsal root ganglion
Osteoarthritis (OA) is a highly prevalent degenerative joint disorder characterized by joint pain and physical disability. Aberrant subchondral bone induces pathological changes and is a major source of pain in OA. In the subchondral bone, which is highly innervated, nerves have dual roles in pain sensation and bone homeostasis regulation. The interaction between peripheral nerves and target cells in the subchondral bone, and the interplay between the sensory and sympathetic nervous systems, allow peripheral nerves to regulate subchondral bone homeostasis. Alterations in peripheral innervation and local transmitters are closely related to changes in nociception and subchondral bone homeostasis, and affect the progression of OA. Recent literature has substantially expanded our understanding of the physiological and pathological distribution and function of specific subtypes of
We examined whether somatosensory evoked potentials (SEPs) were detectable after direct electrical stimulation of injured, reconstructed and normal anterior cruciate ligaments (ACL) during arthroscopy under general anaesthesia. We investigated the position sense of the knee before and after reconstruction and the correlation between the SEP and instability. We found detectable SEPs in all ligaments which had been reconstructed with autogenous semitendinosus and gracilis tendons over the past 18 months as well as in all cases of the normal group. The SEP was detectable in only 15 out of 32 cases in the injured group, although the voltages in the injured group were significantly lower than those of the controls. This was not the case in the reconstructed group. The postoperative position sense in 17 knees improved significantly, but there was no correlation between it and the voltage. The voltage of stable knees was significantly higher than that of the unstable joints. Our findings showed that sensory reinnervation occurred in the reconstructed human ACL and was closely related to the function of the knee.
This review provides a concise outline of the advances made in the care of patients and to the quality of life after a traumatic spinal cord injury (SCI) over the last century. Despite these improvements reversal of the neurological injury is not yet possible. Instead, current treatment is limited to providing symptomatic relief, avoiding secondary insults and preventing additional sequelae. However, with an ever-advancing technology and deeper understanding of the damaged spinal cord, this appears increasingly conceivable. A brief synopsis of the most prominent challenges facing both clinicians and research scientists in developing functional treatments for a progressively complex injury are presented. Moreover, the multiple mechanisms by which damage propagates many months after the original injury requires a multifaceted approach to ameliorate the human spinal cord. We discuss potential methods to protect the spinal cord from damage, and to manipulate the inherent inhibition of the spinal cord to regeneration and repair. Although acute and chronic SCI share common final pathways resulting in cell death and neurological deficits, the underlying putative mechanisms of chronic SCI and the treatments are not covered in this review.
Using a rat model the characteristics of the sensory
An 18-year-old man who presented with weakness in his lower limbs, had an upper motor
The involvement of cyclin D1 in the proliferation of microglia, and the generation and maintenance of bone cancer pain (BCP), have not yet been clarified. We investigated the expression of microglia and cyclin D1, and the influences of cyclin D1 on pain threshold. Female Sprague Dawley (SD) rats were used to establish a rat model of BCP, and the messenger RNA (mRNA) and protein expression of ionized calcium binding adaptor molecule 1 (IBA1) and cyclin D1 were detected by reverse transcription-polymerase chain reaction (RT-PCR) and western blot, respectively. The proliferation of spinal microglia was detected by immunohistochemistry. The pain behaviour test was assessed by quantification of spontaneous flinches, limb use, and guarding during forced ambulation, mechanical paw withdrawal threshold, and thermal paw withdrawal latency.Aims
Methods
The physiological role of mechanoreceptors in the anterior cruciate ligament (ACL) was studied in unanaesthetised decerebrate-spinalised cats and dogs. Tonic activity in the quadriceps and the hamstring increased in response to physiological loading of the ACL. Evoked potentials in the posterior articular nerve (PAN) were elicited by electrical stimulation of the surface of the ligament. ACL loading also induced significant discharges from the PAN. The results suggest that ACL loading has an excitatory effect on the thigh muscles through a multimotor
1 . In the common type of Volkmann's ischaemic contracture affecting the forearm flexors, the infarct takes the form of an ellipsoid with its axis in the line of the anterior interosseous artery and with its central point a little above the middle of the forearm. The greatest damage is at the centre and usually falls most heavily on flexor digitorum profundus and flexor pollicis longus, which are often necrotic. Those muscles more superficially placed, and sometimes the deep extensors, are more likely to exhibit fibrosis. 2. The median nerve runs near the centre of the ellipsoid and may exhibit profound ischaemia. The ulnar nerve, lying at the edge of the ischaemic zone, tends to be less severely affected. 3. The treatment for this condition is excision of all tissues irreparably damaged by ischaemia. If this operation is performed within twelve months from the time of injury, correction of the contracture should be almost complete. The tendons of shortened but active muscles are lengthened or transplanted. 4. After such excision it is possible to carry out reconstructive procedures commonly used in the surgery of lower motor
Pigment epithelium-derived factor (PEDF) is known to induce several types of tissue regeneration by activating tissue-specific stem cells. Here, we investigated the therapeutic potential of PEDF 29-mer peptide in the damaged articular cartilage (AC) in rat osteoarthritis (OA). Mesenchymal stem/stromal cells (MSCs) were isolated from rat bone marrow (BM) and used to evaluate the impact of 29-mer on chondrogenic differentiation of BM-MSCs in culture. Knee OA was induced in rats by a single intra-articular injection of monosodium iodoacetate (MIA) in the right knees (set to day 0). The 29-mer dissolved in 5% hyaluronic acid (HA) was intra-articularly injected into right knees at day 8 and 12 after MIA injection. Subsequently, the therapeutic effect of the 29-mer/HA on OA was evaluated by the Osteoarthritis Research Society International (OARSI) histopathological scoring system and changes in hind paw weight distribution, respectively. The regeneration of chondrocytes in damaged AC was detected by dual-immunostaining of 5-bromo-2'-deoxyuridine (BrdU) and chondrogenic markers.Aims
Methods
Introduction and Aims: It has been suggested that elderly patients have poorer outcomes following carpal tunnel decompression than younger patients, especially if there is severe compression. The purpose of this study was to determine the outcomes of carpal tunnel decompression in the elderly patient and whether the outcome could be predicted from pre-operative nerve conduction studies. Method: A retrospective study of all patients over 70 years who had a carpal tunnel release over a three-year period at Dunedin Hospital, with a minimum one-year follow-up. Pre-operative nerve conduction studies were graded from one to six according to severity. Patients were followed up by postal questionnaire (Boston carpal tunnel symptom severity score) and telephone follow-up. Results: 109 procedures were performed in 96 patients. Eight patients had died, two excluded (one with Motor
Non-coding microRNA (miRNA) in extracellular vesicles (EVs) derived from mesenchymal stem cells (MSCs) may promote neuronal repair after spinal cord injury (SCI). In this paper we report on the effects of MSC-EV-microRNA-381 (miR-381) in a rodent model of SCI. In the current study, the luciferase assay confirmed a binding site of bromodomain-containing protein 4 (BRD4) and Wnt family member 5A (WNT5A). Then we detected expression of miR-381, BRD4, and WNT5A in dorsal root ganglia (DRG) cells treated with MSC-isolated EVs and measured neuron apoptosis in culture by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining. A rat model of SCI was established to detect the in vivo effect of miR-381 and MSC-EVs on SCI.Aims
Methods
1. An experimental study of the effects of nerve and muscle lesions upon the growth of bone has been made. In each case animals were subjected to unilateral lesions in the hind limb, the other limb serving as a control. The growth of the tibia was measured by calculating the difference between the length of the bone on a radiograph at the beginning of the experiment and the length of the dried bone after necropsy. The weights of the dried bones were compared. 2. In the young rabbit simple exposure of the common peroneal nerve, or division of the sural nerve, produced no change in the growth rate of the tibia. Division of both peroneal nerves, producing paralysis of the muscles below the knee, led to lengthening of the affected tibia, and this lengthening persisted until maturity several months later. A similar lengthening was seen after division of the tendons around the ankle. In spite of this lengthening the tibia on the side of the operation was almost always lighter than its fellow. 3. In the puppy division of the anterior nerve roots supplying the hind limb produced a significant lengthening of the tibia of the affected limb three months after operation. No significant changes in limb length occurred after lumbar sympathectomy in the puppy. 4. The significance of these experimental nerve lesions has been considered together with recent observations upon the growth of bone in the presence of lower motor
Purpose and Background: We have previously reported our investigations of nerve ingrowth into intervertebral discs (IVD) from patients with mechanical low back pain. We have shown that in discs that are painful on discography (pain level discs) nerves actively grow into the deep annulus fibrosus and nucleus pulposus. Nerve ingrowth accompanies blood vessel ingrowth and advances into the nucleus pulposus from the end plate. The morphology and neurochemistry of these nerves indicate them to be nociceptive. The growth of non-myelinated pain fibres in other settings is regulated by the cytokine Nerve Growth Factor (NGF). In this study, we have investigated the production and distribution of NGF, or more particularly its active isoform – NGF-β, and its receptors, in diseased intervertebral discs in order to establish whether this cytokine might be responsible for the observed nerve ingrowth in this situation. Methods: Tissue sections of 21 pain level, 15 non-pain level diseased and 12 normal intervertebral discs, taken at the time of spinal surgery, and from cadavers, were probed by radioactive in situ hybridisation (ISH) for expression of NGF-β, and by immunohistochemistry (IHC) for its high and low affinity receptors (trk-A and p75 respectively). In addition, either serial sections were stained with cell specific markers (CD31 – endothelial cell, PGP9.5 –
Study Design: To examine the innervation of the lumbar spine from patients with lower back pain, and spinal nerve roots from patients with traumatic brachial plexus injuries. Objectives: To demonstrate the presence of nerve fibres in lumbar spine structures and spinal nerve roots, and determine whether they express the sensory neuronespecific sodium channels SNS/PN3 and NaN/SNS2. Summary of background data: The anatomical and molecular basis of low back pain and sciatica is poorly understood. Previous studies have demonstrated sensory nerves in facet joint capsule and prolapsed intervertebral disc, but not in ligamentum flavum. The voltagegated sodium channels SNS/PN3 and NaN/SNS2 are expressed by sensory
Total hip arthroplasty (THA) and total knee arthroplasty (TKA) are common orthopaedic procedures requiring postoperative radiographs to confirm implant positioning and identify complications. Artificial intelligence (AI)-based image analysis has the potential to automate this postoperative surveillance. The aim of this study was to prepare a scoping review to investigate how AI is being used in the analysis of radiographs following THA and TKA, and how accurate these tools are. The Embase, MEDLINE, and PubMed libraries were systematically searched to identify relevant articles. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for scoping reviews and Arksey and O’Malley framework were followed. Study quality was assessed using a modified Methodological Index for Non-Randomized Studies tool. AI performance was reported using either the area under the curve (AUC) or accuracy.Aims
Methods
MicroRNA-183 ( Clinical samples were collected from patients with OA, and a mouse model of OA pain was constructed by surgically induced destabilization of the medial meniscus (DMM). Reverse transcription quantitative polymerase chain reaction was employed to measure the expression of miR-183, transforming growth factor α (TGFα), C-C motif chemokine ligand 2 (Aims
Methods
This study used an artificial neural network (ANN) model to determine the most important pre- and perioperative variables to predict same-day discharge in patients undergoing total knee arthroplasty (TKA). Data for this study were collected from the National Surgery Quality Improvement Program (NSQIP) database from the year 2018. Patients who received a primary, elective, unilateral TKA with a diagnosis of primary osteoarthritis were included. Demographic, preoperative, and intraoperative variables were analyzed. The ANN model was compared to a logistic regression model, which is a conventional machine-learning algorithm. Variables collected from 28,742 patients were analyzed based on their contribution to hospital length of stay.Aims
Methods