Advertisement for orthosearch.org.uk
Results 1 - 20 of 30
Results per page:
The Bone & Joint Journal
Vol. 106-B, Issue 6 | Pages 596 - 602
1 Jun 2024
Saarinen AJ Sponseller P Thompson GH White KK Emans J Cahill PJ Hwang S Helenius I

Aims. The aim of this study was to compare outcomes after growth-friendly treatment for early-onset scoliosis (EOS) between patients with skeletal dysplasias versus those with other syndromes. Methods. We retrospectively identified 20 patients with skeletal dysplasias and 292 with other syndromes (control group) who had completed surgical growth-friendly EOS treatment between 1 January 2000 and 31 December 2018. We compared radiological parameters, complications, and health-related quality of life (HRQoL) at mean follow-up of 8.6 years (SD 3.3) in the dysplasia group and 6.6 years (SD 2.6) in the control group. Results. Mean major curve correction per patient did not differ significantly between the dysplasia group (43%) and the control group (28%; p = 0.087). Mean annual spinal height increase was less in the dysplasia group (9.3 mm (SD 5.1) than in the control group (16 mm (SD 9.2); p < 0.001). Mean annual spinal growth adjusted to patient preoperative standing height during the distraction period was 11% in the dysplasia group and 14% in the control group (p = 0.070). The complication rate was 1.6 times higher (95% confidence interval (CI) 1.3 to 2.0) in the dysplasia group. The following complications were more frequent in the dysplasia group: neurological injury (rate ratio (RR) 5.1 (95% CI 2.3 to 11)), deep surgical site infection (RR 2.2 (95% CI 1.2 to 4.1)), implant-related complications (RR 2.0 (95% CI 1.5 to 2.7)), and unplanned revision (RR 1.8 (95% CI 1.3 to 2.5)). Final fusion did not provide additional spinal height compared with watchful waiting (p = 0.054). There were no significant differences in HRQoL scores between the groups. Conclusion. After growth-friendly EOS treatment, patients with skeletal dysplasias experienced a higher incidence of complications compared to those with other syndromes. Surgical growth-friendly treatment for skeletal dysplasia-associated EOS should be reserved for patients with severe, progressive deformities that are refractory to nonoperative treatment. Cite this article: Bone Joint J 2024;106-B(6):596–602


Bone & Joint Open
Vol. 3, Issue 5 | Pages 348 - 358
1 May 2022
Stokes S Drozda M Lee C

This review provides a concise outline of the advances made in the care of patients and to the quality of life after a traumatic spinal cord injury (SCI) over the last century. Despite these improvements reversal of the neurological injury is not yet possible. Instead, current treatment is limited to providing symptomatic relief, avoiding secondary insults and preventing additional sequelae. However, with an ever-advancing technology and deeper understanding of the damaged spinal cord, this appears increasingly conceivable. A brief synopsis of the most prominent challenges facing both clinicians and research scientists in developing functional treatments for a progressively complex injury are presented. Moreover, the multiple mechanisms by which damage propagates many months after the original injury requires a multifaceted approach to ameliorate the human spinal cord. We discuss potential methods to protect the spinal cord from damage, and to manipulate the inherent inhibition of the spinal cord to regeneration and repair. Although acute and chronic SCI share common final pathways resulting in cell death and neurological deficits, the underlying putative mechanisms of chronic SCI and the treatments are not covered in this review


The Bone & Joint Journal
Vol. 103-B, Issue 3 | Pages 547 - 552
1 Mar 2021
Magampa RS Dunn R

Aims. Spinal deformity surgery carries the risk of neurological injury. Neurophysiological monitoring allows early identification of intraoperative cord injury which enables early intervention resulting in a better prognosis. Although multimodal monitoring is the ideal, resource constraints make surgeon-directed intraoperative transcranial motor evoked potential (TcMEP) monitoring a useful compromise. Our experience using surgeon-directed TcMEP is presented in terms of viability, safety, and efficacy. Methods. We carried out a retrospective review of a single surgeon’s prospectively maintained database of cases in which TcMEP monitoring had been used between 2010 and 2017. The upper limbs were used as the control. A true alert was recorded when there was a 50% or more loss of amplitude from the lower limbs with maintained upper limb signals. Patients with true alerts were identified and their case history analyzed. Results. Of the 299 cases reviewed, 279 (93.3%) had acceptable traces throughout and awoke with normal clinical neurological function. No patient with normal traces had a postoperative clinical neurological deficit. True alerts occurred in 20 cases (6.7%). The diagnoses of the alert group included nine cases of adolescent idiopathic scoliosis (AIS) (45%) and six of congenital scoliosis (30%). The incidence of deterioration based on diagnosis was 9/153 (6%) for AIS, 6/30 (20%) for congenital scoliosis, and 2/16 (12.5%) for spinal tuberculosis. Deterioration was much more common in congenital scoliosis than in AIS (p = 0.020). Overall, 65% of alerts occurred during rod instrumentation: 15% occurred during decompression of the internal apex in vertebral column resection surgery. Four alert cases (20%) awoke with clinically detectable neurological compromise. Conclusion. Surgeon-directed TcMEP monitoring has a 100% negative predictive value and allows early identification of physiological cord distress, thereby enabling immediate intervention. In resource constrained environments, surgeon-directed TcMEP is a viable and effective method of intraoperative spinal cord monitoring. Level of evidence: III. Cite this article: Bone Joint J 2021;103-B(3):547–552


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_15 | Pages 8 - 8
1 Oct 2014
Leong J Curtis M Carter E Cowan J Lehovsky J
Full Access

There is a wide range of reports on the prevalence of neurological injuries during scoliosis surgery, however this should depend on the subtypes and severity of the deformity. Furthermore, anterior versus posterior corrections pose different stresses to the spine, further quantifications of neurological risks are presented. Neuromonitoring data was prospectively entered, and the database between 2006 and 2012 was interrogated. All deformity cases under the age of 21 were included. Tumour, fracture, infection and revision cases were excluded. All “red alerts” were identified and detailed examinations of the neuromonitoring records, clinical notes and radiographs were made. Diagnosis, deformity severity and operative details were recorded. 2290 deformity operations were performed: 2068 scoliosis (1636 idiopathic, 204 neuromuscular, 216 syndromic, and 12 others), 89 kyphosis, 54 growing rod procedures, and 80 operations for hemivertebra. 696 anterior and 1363 posterior operations were performed for scoliosis (8 not recorded), and 38 anterior and 51 posterior kyphosis correction. 67 “red alerts” were identified, there were 14 transient and 6 permanent neurological injuries. 62 were during posterior stage (24 idiopathic, 21 neuromuscular, 15 syndromic (2 kyphosis), 1 growing rod procedure, 1 haemivertebra), and 5 were during anterior stage (4 idiopathic scoliosis and 1 syndromic kyphosis). Average Cobb angle was 88°. 1 permanent injuries were during correction for kyphosis, and 5 were for scoliosis (4 syndromic, 1 neuromuscular, and 1 anterior idiopathic). Common reactions after “red alerts” were surgical pause with anaesthetic interventions (n=39) and the Stagnara wake-up test (n=22). Metalwork was partially removed in 20, revised in 12 and completely removed in 9. 13 procedures were abandoned. The overall risk of permanent neurological injuries was 0.2%, the highest risk groups were posterior corrections for kyphosis and scoliosis associated with a syndrome. 4% of all posterior deformity corrections had “red alerts”, and 0.3% resulted in permanent injuries; compared to 0.6% “red alerts” and 0.3% permanent injuries for anterior surgery. The overall risk for idiopathic scoliosis was 0.06%


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXVI | Pages 63 - 63
1 Jun 2012
Maggs JL Clarke AJ Hutton MJ Chan D
Full Access

Purposes of the study. The most common fracture of the cervical spine in the elderly population is a fracture of the odontoid peg. Such fractures are usually not displaced and these are commonly treated non-operatively. Rarely though, peg fractures are displaced and then their management is less straightforward. This is in part because the group of patients who sustain them frequently have complex and pre-existing medical co-morbidities and in part because a new neurological injury may have been sustained as a result of the peg fracture itself. Many options for the management of displaced peg fractures, both operative and non-operative have been described in the literature and discussion continues as to which technique is superior and in which patient population. The purpose of this study was to follow-up those patients who were managed operatively in our unit between 2007 and 2009. Methods and Results. We present our case series of 4 patients who sustained significantly displaced fractures of the odontoid peg with accompanying neurological injury, who were treated with posterior stabilisation using the Harms technique. Conclusions. We have found this method to be safe and reliable. It not only yields a good surgical outcome, but allows patients' rehabilitation to be optimised, maximising functional improvement. We believe the technique is superior to anterior stabilisation in this patient population because it utilises superior posterior bone quality and mechanical fixation. The approach in our unit is to treat elderly patients with displaced odontoid peg fractures according to the same principles as would be followed in managing those that have disabling injuries such as fractures of the femoral neck; early stabilisation and early mobilisation in those patients whose co-morbidities allow it


Bone & Joint Open
Vol. 5, Issue 7 | Pages 612 - 620
19 Jul 2024
Bada ES Gardner AC Ahuja S Beard DJ Window P Foster NE

Aims

People with severe, persistent low back pain (LBP) may be offered lumbar spine fusion surgery if they have had insufficient benefit from recommended non-surgical treatments. However, National Institute for Health and Care Excellence (NICE) 2016 guidelines recommended not offering spinal fusion surgery for adults with LBP, except as part of a randomized clinical trial. This survey aims to describe UK clinicians’ views about the suitability of patients for such a future trial, along with their views regarding equipoise for randomizing patients in a future clinical trial comparing lumbar spine fusion surgery to best conservative care (BCC; the FORENSIC-UK trial).

Methods

An online cross-sectional survey was piloted by the multidisciplinary research team, then shared with clinical professional groups in the UK who are involved in the management of adults with severe, persistent LBP. The survey had seven sections that covered the demographic details of the clinician, five hypothetical case vignettes of patients with varying presentations, a series of questions regarding the preferred management, and whether or not each clinician would be willing to recruit the example patients into future clinical trials.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_15 | Pages 1 - 1
1 Oct 2014
Ede MPN Kularatane U Douis H Gardner A James S Marks D Mehta J Spilsbury J
Full Access

Neural axis anomalies in idiopathic scoliosis (AIS) are well documented, with prevalence of 7% in adolescents; 20% in early-onset and up to 40% in congenital, the case for pre-operative MRI of brainstem to sacrum is well made in these groups. SK is rarer than AIS and the prevalence of anomalies is not defined. The case for routine MRI scan is unclear. A recent report concluded that routine MRI was not indicated, although this was based on only 23 MRI scans in 85 patients. At our institution all patients are undergo whole spine MRI following a diagnosis of SK. We aimed to assess the incidence of significant neural anomalies in Scheuermann's Kyphosis. Using a keyword search for “Scheuermann”, we reviewed all SK patients' MRI reports over the past 6 years. 117 MRI scans were identified. 13 patients did not fulfil the radiological criteria for SK and thus 104 (73M: 31F) scans were reviewed. 14 (13%) of 104 scans showed unexpected Significant abnormal findings. There were 8 (8%) with neural axis anomalies: 4 syrinxes; 1 cord anomaly; 2 cerebellar descents and 1 cerebellar tumour. All these patients had normal neurological examination except one with examination consistent with a known diagnosis of Parkinson's. A further 6 patients had non-neural anomalies. The presence of neural axis anomalies may influence the management of a patient with SK. Neurological compromise during correction is higher in patients with neural axis anomalies and this risk can often be partially mitigated by a preceding neurosurgical procedure (such as foramen magnum decompression or shunt). Furthermore it is well described that these anomalies often occur in patients who demonstrate a normal neurological examination. This study confirms this. Given that MRI is widely available and considering the devastating life implications of neurological injury, we advise pre-operative MRI scan in all SK patents


The Bone & Joint Journal
Vol. 104-B, Issue 1 | Pages 103 - 111
1 Jan 2022
Li J Hu Z Qian Z Tang Z Qiu Y Zhu Z Liu Z

Aims

The outcome following the development of neurological complications after corrective surgery for scoliosis varies from full recovery to a permanent deficit. This study aimed to assess the prognosis and recovery of major neurological deficits in these patients, and to determine the risk factors for non-recovery, at a minimum follow-up of two years.

Methods

A major neurological deficit was identified in 65 of 8,870 patients who underwent corrective surgery for scoliosis, including eight with complete paraplegia and 57 with incomplete paraplegia. There were 23 male and 42 female patients. Their mean age was 25.0 years (SD 16.3). The aetiology of the scoliosis was idiopathic (n = 6), congenital (n = 23), neuromuscular (n = 11), neurofibromatosis type 1 (n = 6), and others (n = 19). Neurological function was determined by the American Spinal Injury Association (ASIA) impairment scale at a mean follow-up of 45.4 months (SD 17.2). the patients were divided into those with recovery and those with no recovery according to the ASIA scale during follow-up.


To present the results of surgical correction in patients with double or triple thoracic/lumbar AIS (Lenke types 2,3,4) with the use of a novel convex/convex unilateral segmental screw correction technique in a single surgeon's prospective series. We reviewed the medical records and spinal radiographs of 92 consecutive patients (72 female-20 male). We measured scoliosis, thoracic kyphosis, lumbar lordosis, scoliosis flexibility and correction index, coronal and sagittal balance before and after surgery, as well as at minimum 2-year follow-up. SRS-22 data was available preoperatively, 6-month, 12-month and 2-year postoperatively for all patients. Surgical technique. All patients underwent posterior spinal fusion using pedicle screw constructs. Unilateral screws were placed across the convexity of each individual thoracic or lumbar curve to allow for segmental correction. ‘Corrective rod’ was the one attached to the convexity of each curve with the correction performed across the main thoracic scoliosis always before the lumbar. Maximum correction of main thoracic curves was always performed, whereas the lumbar scoliosis was corrected to the degree required to achieve a balanced effect across the thoracic and lumbar segments and adequate global coronal spinal balance. Concave screws were not placed across any deformity levels. Bilateral screws across 2 levels caudally and 1–2 levels cephalad provided proximal/distal stability of the construct. Mean age at surgery was 14.9 years with mean Risser grade 2.8. The distribution of scoliosis was: Lenke type 2–26 patients; type 3–43 patients; type 4–23 patients. Mean preoperative Cobb angle for upper thoracic curves was 45°. This was corrected by 62% to mean 17° (p<0.001). Mean preoperative Cobb angle for main thoracic curves was 70°. This was corrected by 69% to mean 22° (p<0.001). Mean preoperative Cobb angle for lumbar curves was 56°. This was corrected by 68% to mean 18° (p<0.001). No patient lost >2° correction at follow-up. Mean preoperative thoracic kyphosis was 34° and lumbar lordosis 46°. Mean postoperative thoracic kyphosis was 45° (p<0.001) and lumbar lordosis 46.5° (p=0.69). Mean preoperative coronal imbalance was 1.2 cm. This corrected to mean 0.02 cm at follow-up (p<0.001). Mean preoperative sagittal imbalance was −2 cm. This corrected to mean −0.1 cm at follow-up (p<0.001). Mean theatre time was 187 minutes, hospital stay 6.8 days and intraoperative blood loss 0.29 blood volumes (1100 ml). Intraoperative spinal cord monitoring was performed recording cortical and cervical SSEPs and transcranial upper/lower limb MEPs and there were no problems. None of the patients developed neurological complications, infection or detected non-union and none required revision surgery to address residual or recurrent deformity. Mean preoperative SRS-22 score was 3.6; this improved to 4.6 at follow-up (p<0.001). All individual parameters also demonstrated significant improvement (p<0.001) with mean satisfaction rate at 2-year follow-up 4.9. The convex-convex unilateral pedicle screw technique can reduce the risk of neurological injury during major deformity surgery as it does not require placement of screws across the deformed apical concave pedicles which are in close proximity to the spinal cord. Despite the use of a lesser number of pedicle fixation points compared to the bilateral segmental screw techniques, in our series it has achieved satisfactory scoliosis correction and restoration of global coronal and sagittal balance with improved thoracic kyphosis and preserved lumbar lordosis. These results have been associated with excellent patient satisfaction and functional outcomes as demonstrated through the SRS-22 scores


The Bone & Joint Journal
Vol. 103-B, Issue 5 | Pages 971 - 975
1 May 2021
Hurley P Azzopardi C Botchu R Grainger M Gardner A

Aims

The aim of this study was to assess the reliability of using MRI scans to calculate the Spinal Instability Neoplastic Score (SINS) in patients with metastatic spinal cord compression (MSCC).

Methods

A total of 100 patients were retrospectively included in the study. The SINS score was calculated from each patient’s MRI and CT scans by two consultant musculoskeletal radiologists (reviewers 1 and 2) and one consultant spinal surgeon (reviewer 3). In order to avoid potential bias in the assessment, MRI scans were reviewed first. Bland-Altman analysis was used to identify the limits of agreement between the SINS scores from the MRI and CT scans for the three reviewers.


Bone & Joint Open
Vol. 2, Issue 3 | Pages 163 - 173
1 Mar 2021
Schlösser TPC Garrido E Tsirikos AI McMaster MJ

Aims

High-grade dysplastic spondylolisthesis is a disabling disorder for which many different operative techniques have been described. The aim of this study is to evaluate Scoliosis Research Society 22-item (SRS-22r) scores, global balance, and regional spino-pelvic alignment from two to 25 years after surgery for high-grade dysplastic spondylolisthesis using an all-posterior partial reduction, transfixation technique.

Methods

SRS-22r and full-spine lateral radiographs were collected for the 28 young patients (age 13.4 years (SD 2.6) who underwent surgery for high-grade dysplastic spondylolisthesis in our centre (Scottish National Spinal Deformity Service) between 1995 and 2018. The mean follow-up was nine years (2 to 25), and one patient was lost to follow-up. The standard surgical technique was an all-posterior, partial reduction, and S1 to L5 transfixation screw technique without direct decompression. Parameters for segmental (slip percentage, Dubousset’s lumbosacral angle) and regional alignment (pelvic tilt, sacral slope, L5 incidence, lumbar lordosis, and thoracic kyphosis) and global balance (T1 spino-pelvic inclination) were measured. SRS-22r scores were compared between patients with a balanced and unbalanced pelvis at final follow-up.


The Bone & Joint Journal
Vol. 102-B, Issue 10 | Pages 1368 - 1374
3 Oct 2020
McDonnell JM Ahern DP Lui DF Yu H Lehovsky J Noordeen H Molloy S Butler JS Gibson A

Aims

Whether a combined anteroposterior fusion or a posterior-only fusion is more effective in the management of patients with Scheuermann’s kyphosis remains controversial. The aim of this study was to compare the radiological and clinical outcomes of these surgical approaches, and to evaluate the postoperative complications with the hypothesis that proximal junctional kyphosis would be more common in one-stage posterior-only fusion.

Methods

A retrospective review of patients treated surgically for Scheuermann’s kyphosis between 2006 and 2014 was performed. A total of 62 patients were identified, with 31 in each group. Parameters were compared to evaluate postoperative outcomes using chi-squared tests, independent-samples t-tests, and z-tests of proportions analyses where applicable.


The Bone & Joint Journal
Vol. 102-B, Issue 5 | Pages 627 - 631
1 May 2020
Mahon J Ahern DP Evans SR McDonnell J Butler JS

Aims

The timing of surgical fixation in spinal fractures is a contentious topic. Existing literature suggests that early stabilization leads to reduced morbidity, improved neurological outcomes, and shorter hospital stay. However, the quality of evidence is low and equivocal with regard to the safety of early fixation in the severely injured patient. This paper compares complication profiles between spinal fractures treated with early fixation and those treated with late fixation.

Methods

All patients transferred to a national tertiary spinal referral centre for primary surgical fixation of unstable spinal injuries without preoperative neurological deficit between 1 July 2016 and 20 October 2017 were eligible for inclusion. Data were collected retrospectively. Patients were divided into early and late cohorts based on timing from initial trauma to first spinal operation. Early fixation was defined as within 72 hours, and late fixation beyond 72 hours.


The Bone & Joint Journal
Vol. 102-B, Issue 4 | Pages 519 - 523
1 Apr 2020
Kwan KYH Koh HY Blanke KM Cheung KMC

Aims

The purpose of this study was to evaluate the incidence and analyze the trends of surgeon-reported complications following surgery for adolescent idiopathic scoliosis (AIS) over a 13-year period from the Scoliosis Research Society (SRS) Morbidity and Mortality database.

Methods

All patients with AIS between ten and 18 years of age, entered into the SRS Morbidity and Mortality database between 2004 and 2016, were analyzed. All perioperative complications were evaluated for correlations with associated factors. Complication trends were analyzed by comparing the cohorts between 2004 to 2007 and 2013 to 2016.


The Bone & Joint Journal
Vol. 101-B, Issue 7 | Pages 872 - 879
1 Jul 2019
Li S Zhong N Xu W Yang X Wei H Xiao J

Aims

The aim of this study was to explore the prognostic factors for postoperative neurological recovery and survival in patients with complete paralysis due to neoplastic epidural spinal cord compression.

Patients and Methods

The medical records of 135 patients with complete paralysis due to neoplastic cord compression were retrospectively reviewed. Potential factors including the timing of surgery, muscular tone, and tumour characteristics were analyzed in relation to neurological recovery using logistical regression analysis. The association between neurological recovery and survival was analyzed using a Cox model. A nomogram was formulated to predict recovery.


The Bone & Joint Journal
Vol. 99-B, Issue 8 | Pages 1080 - 1087
1 Aug 2017
Tsirikos AI Mataliotakis G Bounakis N

Aims

We present the results of correcting a double or triple curve adolescent idiopathic scoliosis using a convex segmental pedicle screw technique.

Patients and Methods

We reviewed 191 patients with a mean age at surgery of 15 years (11 to 23.3). Pedicle screws were placed at the convexity of each curve. Concave screws were inserted at one or two cephalad levels and two caudal levels. The mean operating time was 183 minutes (132 to 276) and the mean blood loss 0.22% of the total blood volume (0.08% to 0.4%). Multimodal monitoring remained stable throughout the operation. The mean hospital stay was 6.8 days (5 to 15).


The Bone & Joint Journal
Vol. 99-B, Issue 10 | Pages 1381 - 1388
1 Oct 2017
Wong YW Samartzis D Cheung KMC Luk K

Aims

To address the natural history of severe post-tuberculous (TB) kyphosis, with focus upon the long-term neurological outcome, occurrence of restrictive lung disease, and the effect on life expectancy.

Patients and Methods

This is a retrospective clinical review of prospectively collected imaging data based at a single institute. A total of 24 patients of Southern Chinese origin who presented with spinal TB with a mean of 113° of kyphosis (65° to 159°) who fulfilled inclusion criteria were reviewed. Plain radiographs were used to assess the degree of spinal deformity. Myelography, CT and MRI were used when available to assess the integrity of the spinal cord and canal. Patient demographics, age of onset of spinal TB and interventions, types of surgical procedure, intra- and post-operative complications, and neurological status were assessed.


Bone & Joint Research
Vol. 5, Issue 2 | Pages 46 - 51
1 Feb 2016
Du J Wu J Wen Z Lin X

Objectives

To employ a simple and fast method to evaluate those patients with neurological deficits and misplaced screws in relatively safe lumbosacral spine, and to determine if it is necessary to undertake revision surgery.

Methods

A total of 316 patients were treated by fixation of lumbar and lumbosacral transpedicle screws at our institution from January 2011 to December 2012. We designed the criteria for post-operative revision scores of pedicle screw malpositioning (PRSPSM) in the lumbosacral canal. We recommend the revision of the misplaced pedicle screw in patients with PRSPSM = 5′ as early as possible. However, patients with PRSPSM < 5′ need to follow the next consecutive assessment procedures. A total of 15 patients were included according to at least three-stage follow-up.


Bone & Joint 360
Vol. 3, Issue 5 | Pages 39 - 40
1 Oct 2014
Foy MA


The Bone & Joint Journal
Vol. 97-B, Issue 3 | Pages 358 - 365
1 Mar 2015
Zhu L F. Zhang Yang D Chen A

The aim of this study was to evaluate the feasibility of using the intact S1 nerve root as a donor nerve to repair an avulsion of the contralateral lumbosacral plexus. Two cohorts of patients were recruited. In cohort 1, the L4–S4 nerve roots of 15 patients with a unilateral fracture of the sacrum and sacral nerve injury were stimulated during surgery to establish the precise functional distribution of the S1 nerve root and its proportional contribution to individual muscles. In cohort 2, the contralateral uninjured S1 nerve root of six patients with a unilateral lumbosacral plexus avulsion was transected extradurally and used with a 25 cm segment of the common peroneal nerve from the injured leg to reconstruct the avulsed plexus.

The results from cohort 1 showed that the innervation of S1 in each muscle can be compensated for by L4, L5, S2 and S3. Numbness in the toes and a reduction in strength were found after surgery in cohort 2, but these symptoms gradually disappeared and strength recovered. The results of electrophysiological studies of the donor limb were generally normal.

Severing the S1 nerve root does not appear to damage the healthy limb as far as clinical assessment and electrophysiological testing can determine. Consequently, the S1 nerve can be considered to be a suitable donor nerve for reconstruction of an avulsed contralateral lumbosacral plexus.

Cite this article: Bone Joint J 2015; 97-B:358–65.