Advertisement for orthosearch.org.uk
Results 1 - 17 of 17
Results per page:
The Bone & Joint Journal
Vol. 104-B, Issue 1 | Pages 34 - 44
1 Jan 2022
Beckers L Dandois F Ooms D Berger P Van Laere K Scheys L Vandenneucker H

Aims

Higher osteoblastic bone activity is expected in aseptic loosening and painful unicompartmental knee arthroplasty (UKA). However, insights into normal bone activity patterns after medial UKAs are lacking. The aim of this study was to identify the evolution in bone activity pattern in well-functioning medial mobile-bearing UKAs.

Methods

In total, 34 patients (13 female, 21 male; mean age 62 years (41 to 79); BMI 29.7 kg/m2 (23.6 to 42.1)) with 38 medial Oxford partial UKAs (20 left, 18 right; 19 cementless, 14 cemented, and five hybrid) were prospectively followed with sequential 99mTc-hydroxymethane diphosphonate single photon emission CT (SPECT)/CT preoperatively, and at one and two years postoperatively. Changes in mean osteoblastic activity were investigated using a tracer localization scheme with volumes of interest (VOIs), reported by normalized mean tracer values. A SPECT/CT registration platform additionally explored cortical tracer evolution in zones of interest identified by previous experimental research.


Bone & Joint Research
Vol. 8, Issue 11 | Pages 563 - 569
1 Nov 2019
Koh Y Lee J Lee H Kim H Kang K

Objectives

Unicompartmental knee arthroplasty (UKA) is an alternative to total knee arthroplasty with isolated medial or lateral compartment osteoarthritis. However, polyethylene wear can significantly reduce the lifespan of UKA. Different bearing designs and materials for UKA have been developed to change the rate of polyethylene wear. Therefore, the objective of this study is to investigate the effect of insert conformity and material on the predicted wear in mobile-bearing UKA using a previously developed computational wear method.

Methods

Two different designs were tested with the same femoral component under identical kinematic input: anatomy mimetic design (AMD) and conforming design inserts with different conformity levels. The insert materials were standard or crosslinked ultra-high-molecular-weight polyethylene (UHMWPE). We evaluated the contact pressure, contact area, wear rate, wear depth, and volumetric wear under gait cycle loading conditions.


The Bone & Joint Journal
Vol. 104-B, Issue 10 | Pages 1118 - 1125
4 Oct 2022
Suda Y Hiranaka T Kamenaga T Koide M Fujishiro T Okamoto K Matsumoto T

Aims. A fracture of the medial tibial plateau is a serious complication of Oxford mobile-bearing unicompartmental knee arthroplasty (OUKA). The risk of these fractures is reportedly lower when using components with a longer keel-cortex distance (KCDs). The aim of this study was to examine how slight varus placement of the tibial component might affect the KCDs, and the rate of tibial plateau fracture, in a clinical setting. Methods. This retrospective study included 255 patients who underwent 305 OUKAs with cementless tibial components. There were 52 males and 203 females. Their mean age was 73.1 years (47 to 91), and the mean follow-up was 1.9 years (1.0 to 2.0). In 217 knees in 187 patients in the conventional group, tibial cuts were made orthogonally to the tibial axis. The varus group included 88 knees in 68 patients, and tibial cuts were made slightly varus using a new osteotomy guide. Anterior and posterior KCDs and the origins of fracture lines were assessed using 3D CT scans one week postoperatively. The KCDs and rate of fracture were compared between the two groups. Results. Medial tibial fractures occurred after surgery in 15 patients (15 OUKAs) in the conventional group, but only one patient (one OUKA) had a tibial fracture after surgery in the varus group. This difference was significant (6.9% vs 1.1%; p = 0.029). The mean posterior KCD was significantly shorter in the conventional group (5.0 mm (SD 1.7)) than in the varus group (6.1 mm (SD 2.1); p = 0.002). Conclusion. In OUKA, the distance between the keel and posterior tibial cortex was longer in our patients with slight varus alignment of the tibial component, which seems to decrease the risk of postoperative tibial fracture. Cite this article: Bone Joint J 2022;104-B(10):1118–1125


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 9 - 9
1 Apr 2019
Fukuoka S Fukunaga K Taniura K Sasaki T Takaoka K
Full Access

Aims

Spontaneous osteonecrosis of the knee (SONK) mainly affects the medial femoral condyle, would be a good indication for UKA. The primary aim of this study was to assess the clinical, functional and radiographic outcomes at middle to long-term follow-up, of a consecutive series of fifty UKA used for the treatment of SONK. The secondary aim was to assess the volume of necrotic bone and determine if this influenced the outcome.

Patients and Methods

We reviewed 50 knees who were treated for SONK. Patients included ten males and 38 females. The mean age was 73 years (range, 57 to 83 years). The mean height and body weight were, respectively 153 cm (141 ∼171 cm) and 57 kg (35 ∼75kg). All had been operated on using the Oxford mobile-bearing UKA (Zimmer-Biomet, Swindon, United Kingdom) with cement fixation. The mean follow-up period was 8.4 years (range, 4 to 15years). We measured the size (width, length and depth) and the volume to be estimated (width x length x depth) of the necrotic bone mass using MRI in T1-weighted images.

The clinical results were evaluated using the Knee Society Scoring System (KSS) and Oxford Knee Score (OKS). The flexion angle of the knee was evaluated using lateral X-ray images in maximum flexion.


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 5 | Pages 622 - 628
1 May 2011
Pandit H Jenkins C Gill HS Smith G Price AJ Dodd CAF Murray DW

The contraindications for unicompartmental knee replacement (UKR) remain controversial. The views of many surgeons are based on Kozinn and Scott’s 1989 publication which stated that patients who weighed more than 82 kg, were younger than 60 years, undertook heavy labour, had exposed bone in the patellofemoral joint or chondrocalcinosis, were not ideal candidates for UKR. Our aim was to determine whether these potential contraindications should apply to patients with a mobile-bearing UKR. In order to do this the outcome of patients with these potential contraindications was compared with that of patients without the contraindications in a prospective series of 1000 UKRs. The outcome was assessed using the Oxford knee score, the American Knee Society score, the Tegner activity score, revision rate and survival.

The clinical outcome of patients with each of the potential contraindications was similar to or better than those without each contraindication. Overall, 678 UKRs (68%) were performed in patients who had at least one potential contraindication and only 322 (32%) in patients deemed to be ideal. The survival at ten years was 97.0% (95% confidence interval 93.4 to 100.0) for those with potential contraindications and 93.6% (95% confidence interval 87.2 to 100.0) in the ideal patients.

We conclude that the thresholds proposed by Kozinn and Scott using weight, age, activity, the state of the patellofemoral joint and chondrocalcinosis should not be considered to be contraindications for the use of the Oxford UKR.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_4 | Pages 83 - 83
1 Apr 2019
Mullaji A Shetty G
Full Access

Aims

The aims of this retrospective study were to determine the incidence of extra-articular deformities (EADs), and determine their effect on postoperative alignment in knees undergoing mobile-bearing, medial unicompartmental knee arthroplasty (UKA).

Patients and Methods

Limb mechanical alignment (hip-knee-ankle angle), coronal bowing of the femoral shaft and proximal tibia vara or medial proximal tibial angle (MPTA) were measured on standing, full-length hip-to-ankle radiographs of 162 patients who underwent 200 mobile-bearing, medial UKAs


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 543 - 543
1 Dec 2013
Suzuki T Ryu K Yamada T Kojima K Saito S Tokuhashi Y
Full Access

Introduction

Accurate soft tissue balancing in knee arthroplasty is essential in order to attain good postoperative clinical results. In mobile-bearing UKA (Oxford Partial Knee unicompartmental knee arthroplasty, Biomet), since determination of the thickness of the spacer block depends on the individual surgeon, it will vary and it will be difficult to attain appropriate knee balancing. The first objective of the present study was to investigate flexion and extension medial unicompartmental knee gap kinematics in conjunction with various joint distraction forces. The second objective of the study was to investigate the accuracy of gap measurement using a spacer block and a tensor device.

Methods

A total of 40 knees in 31 subjects (5 men and 26 women) with a mean age of 71.5 years underwent Oxford UKA for knee osteoarthritis and idiopathic osteonecrosis of the medial compartment. According to instructions of Phase 3 Oxford UKA, spacer block technique was used to make the extension gap equal to the flexion gap. Adequate thickness of the spacer block was determined so that the surgeon could easily insert and remove it with no stress. Following osteotomy, the tensor devise was used to measure the medial compartmental gap between the femoral trial prosthesis and the tibial osteotomy surface (joint component gap) (Fig. 1 and 2). The medial gap was measured at 20° of knee flexion (extension gap) and 90° of knee flexion (flexion gap) with 25N, 50N, 75N, 100N, 125N, 150N of joint distraction force. Corresponding size of bearing was determined for the prosthesis. The interplay gap was calculated by subtracting the thickness of the tibial prosthesis and the thickness of the selected size of bearing from the measured extension and flexion gaps.


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 4 | Pages 470 - 475
1 Apr 2011
Kendrick BJL Simpson DJ Kaptein BL Valstar ER Gill HS Murray DW Price AJ

The Oxford unicompartmental knee replacement (UKR) was designed to minimise wear utilising a fully-congruent, mobile, polyethylene bearing. Wear of polyethylene is a significant cause of revision surgery in UKR in the first decade, and the incidence increases in the second decade. Our study used model-based radiostereometric analysis to measure the combined wear of the upper and lower bearing surfaces in 13 medial-compartment Oxford UKRs at a mean of 20.9 years (17.2 to 25.9) post-operatively.

The mean linear penetration of the polyethylene bearing was 1.04 mm (0.307 to 2.15), with a mean annual wear rate of 0.045 mm/year (0.016 to 0.099). The annual wear rate of the phase-2 bearings (mean 0.022 mm/year) was significantly less (p = 0.01) than that of phase-1 bearings (mean 0.07 mm/year).

The linear wear rate of the Oxford UKR remains very low into the third decade. We believe that phase-2 bearings had lower wear rates than phase-1 implants because of the improved bearing design and surgical technique which decreased the incidence of impingement. We conclude that the design of the Oxford UKR gives low rates of wear in the long term.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 38 - 38
1 Mar 2017
Mullaji A
Full Access

Aims

Medial unicompartmental knee arthroplasty (UKA) is undertaken in patients with a passively correctable varus deformity. Our hypothesis was that restoration of natural soft tissue tension would result in a comparable lower limb alignment with the contralateral normal lower limb after mobile-bearing medial UKA.

Patients and Methods

In this retrospective study, hip-knee-ankle (HKA) angle, position of the weight-bearing axis (WBA) and knee joint line obliquity (KJLO) after mobile-bearing medial UKA was compared with the normal (clinically and radiologically) contralateral lower limb in 123 patients.


The Bone & Joint Journal
Vol. 99-B, Issue 5 | Pages 632 - 639
1 May 2017
Hamilton TW Pandit HG Maurer DG Ostlere SJ Jenkins C Mellon SJ Dodd CAF Murray DW

Aims

It is not clear whether anterior knee pain and osteoarthritis (OA) of the patellofemoral joint (PFJ) are contraindications to medial unicompartmental knee arthroplasty (UKA). Our aim was to investigate the long-term outcome of a consecutive series of patients, some of whom had anterior knee pain and PFJ OA managed with UKA.

Patients and Methods

We assessed the ten-year functional outcomes and 15-year implant survival of 805 knees (677 patients) following medial mobile-bearing UKA. The intra-operative status of the PFJ was documented and, with the exception of bone loss with grooving to the lateral side, neither the clinical or radiological state of the PFJ nor the presence of anterior knee pain were considered a contraindication. The impact of radiographic findings and anterior knee pain was studied in a subgroup of 100 knees (91 patients).


The Bone & Joint Journal
Vol. 101-B, Issue 8 | Pages 915 - 921
1 Aug 2019
Beckers L Ooms D Berger P Van Laere K Scheys L Vandenneucker H

Aims

Altered alignment and biomechanics are thought to contribute to the progression of osteoarthritis (OA) in the native compartments after medial unicompartmental knee arthroplasty (UKA). The aim of this study was to evaluate the bone activity and remodelling in the lateral tibiofemoral and patellofemoral compartment after medial mobile-bearing UKA.

Patients and Methods

In total, 24 patients (nine female, 15 male) with 25 medial Oxford UKAs (13 left, 12 right) were prospectively followed with sequential 99mTc-hydroxymethane diphosphonate single photon emission CT (SPECT)/CT preoperatively and at one and two years postoperatively, along with standard radiographs and clinical outcome scores. The mean patient age was 62 years (40 to 78) and the mean body mass index (BMI) was 29.7 kg/m2 (23.6 to 42.2). Mean osteoblastic activity was evaluated using a tracer localization scheme with volumes of interest (VOIs). Normalized mean tracer values were calculated as the ratio between the mean tracer activity in a VOI and background activity in the femoral diaphysis.


Aims. Mobile-bearing unicompartmental knee arthroplasty (UKA) with a flat tibial plateau has not performed well in the lateral compartment, leading to a high rate of dislocation. For this reason, the Domed Lateral UKA with a biconcave bearing was developed. However, medial and lateral tibial plateaus have asymmetric anatomical geometries, with a slightly dished medial and a convex lateral plateau. Therefore, the aim of this study was to evaluate the extent at which the normal knee kinematics were restored with different tibial insert designs using computational simulation. Methods. We developed three different tibial inserts having flat, conforming, and anatomy-mimetic superior surfaces, whereas the inferior surface in all was designed to be concave to prevent dislocation. Kinematics from four male subjects and one female subject were compared under deep knee bend activity. Results. The conforming design showed significantly different kinematics in femoral rollback and internal rotation compared to that of the intact knee. The flat design showed significantly different kinematics in femoral rotation during high flexion. The anatomy-mimetic design preserved normal knee kinematics in femoral rollback and internal rotation. Conclusion. The anatomy-mimetic design in lateral mobile UKA demonstrated restoration of normal knee kinematics. Such design may allow achievement of the long sought normal knee characteristics post-lateral mobile UKA. However, further in vivo and clinical studies are required to determine whether this design can truly achieve a more normal feeling of the knee and improved patient satisfaction. Cite this article: Bone Joint Res 2020;9(7):421–428


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_2 | Pages 48 - 48
1 Jan 2017
Pegg E Alotta G Barrera O
Full Access

Polyethylene wear of joint replacements can cause severe clinical complications, including; osteolysis, implant loosening, inflammation and pain. Wear simulator testing is often used to assess new designs, but it is expensive and time consuming. It is possible to predict the volume of polyethylene implant wear from finite element models using a modification of Archard's classic wear law [1–2]. Typically, linear elastic isotropic, or elasto-plastic material models are used to represent the polyethylene. The purpose of this study was to investigate whether use of a viscoelastic material model would significantly alter the predicted volumetric wear of a mobile-bearing unicompartmental knee replacement. Tensile creep-recovery experiments were performed to characterise the creep and relaxation behaviour of the polyethylene (moulded GUR 4150 samples machined to 180×20×1 mm). Samples were loaded to 3 MPa stress in 4 minutes, and then held for 6 hours, the tensile stress was removed and samples were left to relax for 6 hours. The mechanical test data was used fit to a validated three–dimensional fractional Maxwell viscoelastic constitutive material model [3]. An explicit finite element model of a mobile–bearing unicompartmental knee replacement was created, which has been described previously [4]. The medial knee replacement was loaded to 1200 N over a period of 0.2 s. The bearing was meshed using quadratic tetrahedral elements (1.5 mm seeding size based on results of a mesh convergence study), and the femoral component was represented as an analytical rigid body. Wear predictions were made from the contact stress and sliding distance using Archard's law, as has been described in the literature [1–2]. A wear factor of 5.24×10. −11. was used based upon the work by Netter et al. [2]. All models were created and solved using ABAQUS finite element software (version 6.14, Simulia, Dassault Systemes). The fractional viscoelastic material model predicted almost twice as much wear (0.119 mm. 3. /million cycles) compared to the elasto-plastic model (0.069 mm. 3. /million cycles). The higher wear prediction was due to both an increased sliding distance and higher contact pressures in the viscoelastic model. These preliminary findings indicate the simplified elasto-plastic polyethylene material representation can underestimate wear predictions from numerical simulations. Polyethylene is known to be a viscoelastic material which undergoes creep clinically, and it is not surprising that it is necessary to represent that viscoelastic behaviour to accurately predict implant wear. However, it does increase the complexity and run time of such computational studies, which may be prohibitive


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 12 | Pages 1597 - 1601
1 Dec 2007
Beard DJ Pandit H Gill HS Hollinghurst D Dodd CAF Murray DW

Patellofemoral joint degeneration is often considered a contraindication to medial unicompartmental knee replacement. We examined the validity of this preconception using information gathered prospectively on the intra-operative status of the patellofemoral joint in 824 knees in 793 consecutive patients who underwent Oxford unicondylar knee replacement for anteromedial osteoarthritis. All operations were performed between January 1998 and September 2005. A five-point grading system classified degeneration of the patellofemoral joint from none to full-thickness cartilage loss. A subclassification of the presence or absence of any full-thickness cartilage loss was subsequently performed to test selected hypotheses. Outcome was evaluated independently by physiotherapists using the Oxford and the American Knee Society Scores with a minimum follow-up of one year. Full-thickness cartilage loss on the trochlear surface was observed in 100 of 785 knees (13%), on the medial facet of the patella in 69 of 782 knees (9%) and on the lateral facet in 29 of 784 knees (4%). Full-thickness cartilage loss at any location was seen in 128 knees (16%) and did not produce a significantly worse outcome than those with a normal or near-normal joint surface. The severity of the degeneration at any of the intra-articular locations also had no influence on outcome. We concluded that, provided there is not bone loss and grooving of the lateral facet, damage to the articular cartilage of the patellofemoral joint to the extent of full-thickness cartilage loss is not a contraindication to the Oxford mobile-bearing unicompartmental knee replacement


The Bone & Joint Journal
Vol. 106-B, Issue 9 | Pages 916 - 923
1 Sep 2024
Fricka KB Wilson EJ Strait AV Ho H Hopper, Jr RH Hamilton WG Sershon RA

Aims

The optimal bearing surface design for medial unicompartmental knee arthroplasty (UKA) remains controversial. The aim of this study was to compare outcomes of fixed-bearing (FB) and mobile-bearing (MB) UKAs from a single high-volume institution.

Methods

Prospectively collected data were reviewed for all primary cemented medial UKAs performed by seven surgeons from January 2006 to December 2022. A total of 2,999 UKAs were identified, including 2,315 FB and 684 MB cases. The primary outcome measure was implant survival. Secondary outcomes included 90-day and cumulative complications, reoperations, component revisions, conversion arthroplasties, range of motion, and patient-reported outcome measures. Overall mean age at surgery was 65.7 years (32.9 to 94.3), 53.1% (1,593/2,999) of UKAs were implanted in female patients, and demographics between groups were similar (p > 0.05). The mean follow-up for all UKAs was 3.7 years (0.0 to 15.6).


The Bone & Joint Journal
Vol. 102-B, Issue 8 | Pages 965 - 966
1 Aug 2020
Haddad FS Plastow R


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 10 | Pages 1356 - 1361
1 Oct 2012
Streit MR Walker T Bruckner T Merle C Kretzer JP Clarius M Aldinger PR Gotterbarm T

The Oxford mobile-bearing unicompartmental knee replacement (UKR) is an effective and safe treatment for osteoarthritis of the medial compartment. The results in the lateral compartment have been disappointing due to a high early rate of dislocation of the bearing. A series using a newly designed domed tibial component is reported.

The first 50 consecutive domed lateral Oxford UKRs in 50 patients with a mean follow-up of three years (2.0 to 4.3) were included. Clinical scores were obtained prospectively and Kaplan-Meier survival analysis was performed for different endpoints. Radiological variables related to the position and alignment of the components were measured.

One patient died and none was lost to follow-up. The cumulative incidence of dislocation was 6.2% (95% confidence interval (CI) 2.0 to 17.9) at three years. Survival using revision for any reason and aseptic revision was 94% (95% CI 82 to 98) and 96% (95% CI 85 to 99) at three years, respectively. Outcome scores, visual analogue scale for pain and maximum knee flexion showed a significant improvement (p < 0.001). The mean Oxford knee score was 43 (sd 5.3), the mean Objective American Knee Society score was 91 (sd 13.9) and the mean Functional American Knee Society score was 90 (sd 17.5). The mean maximum flexion was 127° (90° to 145°). Significant elevation of the lateral joint line as measured by the proximal tibial varus angle (p = 0.04) was evident in the dislocation group when compared with the non-dislocation group.

Clinical results are excellent and short-term survival has improved when compared with earlier series. The risk of dislocation remains higher using a mobile-bearing UKR in the lateral compartment when compared with the medial compartment. Patients should be informed about this complication. To avoid dislocations, care must be taken not to elevate the lateral joint line.