Identifying and restoring alignment is a primary aim of total knee arthroplasty (TKA). In the coronal plane, the pre-pathological hip knee angle can be predicted using an arithmetic method (aHKA) by measuring the
The Coronal Plane Alignment of the Knee (CPAK) is a recent method for classifying knees using the hip-knee-ankle angle and joint line obliquity to assist surgeons in selection of an optimal alignment philosophy in total knee arthroplasty (TKA)1. It is unclear, however, how CPAK classification impacts pre-operative joint balance. Our objective was to characterise joint balance differences between CPAK categories. A retrospective review of TKA's using the OMNIBotics platform and BalanceBot (Corin, UK) using a tibia first workflow was performed. Lateral distal femoral angle (LDFA) and
Introduction. Deformity influences the weight bearing stresses on the knee joint. Correction of mechanical alignment is performed to offload the knee and slow the rate of degenerative change. Fixator assisted deformity correction facilitates accurate correction prior to internal fixation. We present our results with standard Ilizarov and UNYCO system assisted deformity correction of the lower limb. Materials and Methods. Retrospective analysis of adult surgical cases of mechanical re-alignment performed between 2010 and 2019 in a tertiary referral centre. We recorded standard demographics and operative time from the electronic patient record. We analysed digitalised radiographs to record pre- and post-operative measurements of: Mechanical axis deviation (MAD), femoral
Aims. The aims of this retrospective study were to determine the incidence of extra-articular deformities (EADs), and determine their effect on postoperative alignment in knees undergoing mobile-bearing, medial unicompartmental knee arthroplasty (UKA). Patients and Methods. Limb mechanical alignment (hip-knee-ankle angle), coronal bowing of the femoral shaft and proximal tibia vara or
Objective. Open-wedge high tibial osteotomy (OWHTO) involves performing a corrective osteotomy of the proximal tibia and removing a wedge of bone to correct varus alignment. Although previous studies have investigated changes in leg length before and after OWHTO using X-rays, none has evaluated three-dimensional (3D) leg length changes after OWHTO. We therefore used 3D preoperative planning software to evaluate changes in leg length after OWHTO in three dimensions. Methods. The study subjects were 55 knees of 46 patients (10 men and 36 women of mean age 69.9 years) with medial osteoarthritis of the knee or osteonecrosis of the medial femoral condyle with a femorotibial angle of >185º and restricted range of motion (extension <–10º, flexion <130º), excluding those also suffering from patellofemoral arthritis or lateral osteoarthritis of the knee. OWHTO was simulated from computed tomography scans of the whole leg using ZedHTO 3D preoperative planning software. We analyzed the hip-knee-ankle angle (HKA), flexion contracture angle (FCA), mechanical
Introduction. Three anatomic landmarks are typically used to estimate proper femoral component rotation in total knee arthroplasty: the transepicondylar axis (TEA), Whiteside's line, and the posterior condylar axis (PCA). Previous studies have shown that the presence of tibia vara may be accompanied by a hyperplastic posteromedial femoral condyle, which affects the relationship between the PCA and the TEA. The purpose of this study was to determine the relationship of tibia vara with the PCA. Methods. Two hundred and forty-eight knees underwent planning for total knee arthroplasty with MRI. The MRI was used to characterize the relationship between the transepicondylar axis and the posterior condylar axis. Long-leg standing films (LLSF) were obtained to evaluate the
Conventional total knee arthroplasty aims to place the joint line perpendicular to the mechanical axis, despite the fact that the normal knee is inclined approximately 3 degrees, resulting in a
With observed success and increased popularity of growth modulation techniques, there has been a trend towards use in progressively younger patients. Younger age at growth modulation increases the likelihood of complete deformity correction and need for implant removal prior to skeletal maturity introducing the risk of rebound deformity. The purpose of this study was to quantify magnitude and identify risk factors for rebound deformity after growth modulation. We performed a retrospective review of all patients undergoing growth modulation with a tension band plate for coronal plane deformity about the knee with subsequent implant removal. Exclusion criteria included completion epiphysiodesis or osteotomy at implant removal, ongoing growth modulation, and less than one year radiographic follow-up without rebound deformity. Mechanical lateral distal femoral angle (mLDFA), mechanical
Purpose:. Despite advances in limb reconstruction, there are still a number of young patients who require trans-tibial amputation. Amputation osteoplasty is a technique described by Ertl to enhance rehabilitation after trans-tibial amputation. The purpose of the present study was to evaluate the results of the original Ertl procedure in skeletally immature patients, and to assess whether use of this procedure would result in a diminished incidence of bony overgrowth. Methods:. Four consecutive patients (five amputations) treated between January 2005 and June 2008 were reviewed. Clinical evaluation consisted of completion of the prosthesis evaluation questionnaire (PEQ) and physical examination. Radiographic analysis was performed to evaluate bone-bridge healing, bone overgrowth and the
Introduction. Medial open wedge high tibial osteotomy (HTO) is a generally accepted surgical method for medial unicompartmental osteoarthritis with varus malalignment of the lower extremity. However, several authors have suggested the possibility of unintentional secondary changes during open wedge HTO, which include posterior tibial slope angle (PTS) change, tibial rotation change and medial–lateral slope change of the knee joint line, may influence knee kinematics and produce poor clinical outcomes. We sought to analyze postoperative changes in three-dimensional planes using a virtual wedge osteotomy 3D model. Pre- and post-operative changes in the
Introduction. Wear debris from polyethylene tibial inserts has been associated with limited longevity of total knee replacements (TKRs). While material factors were studied extensively and considerable progress has been made, there is little knowledge about surgical factors, particularly on how the wear rate is related to implant positioning. It was the purpose of this study to determine the combined effect of patient and implant positioning factors on the volumetric wear rate of TKRs. Our hypothesis was that implant alignment has a significant impact on the wear rate when controlled for other patient factors. Methods. This study included 59 tibial inserts of a cruciate retaining TKR design (Nexgen, Zimmer Inc.). The patients' age, sex, weight, height, and implant size were obtained. All implants were scanned with a coordinate measuring machine. Volumetric wear was determined using an autonomous mathematical reconstruction method (Figure 1). Radiographs were used to determine the anatomic lateral distal femoral angle (aLDFA), anatomic
Introduction. Neutral mechanical alignment in TKA has been shown to be an important consideration for survivorship, wear, and aseptic loosening. However, native knee anatomy is described by a joint line in 3° of varus, 2–3° of mechanical distal femoral valgus, and 2–3° of proximal tibia varus. Described kinematic planning methods replicate native joint alignment in extension without changing tibiofemoral alignment, but do not account for native alignment through a range of motion. An asymmetric TKA femoral component with a thicker medial femoral condyle and posterior condylar internal rotation paired with an asymmetric polyethylene insert aligns the joint line in 3° of varus while maintaining distal femoral and proximal tibial cuts perpendicular to mechanical axis. The asymmetric components recreate an anatomic varus joint line while avoiding tibiofemoral malalignment or femoral component internal rotation, a risk factor for patellofemoral maltracking. The study seeks to determine how many patients would be candidates for a kinematically planned knee without violating the principle of a neutral mechanical axis (0° ± 3°). Methods. A cohort comprised of 55 consecutive preoperative THA patients with asymptomatic knees and 55 consecutive preoperative primary unilateral TKA patients underwent simultaneous biplanar radiographic imaging. Full length coronal images from the thoracolumbar junction to the ankles were measured by two independent observers for the following: mechanical tibiofemoral angle (mTFA), mechanical lateral distal femoral angle (mLDFA), and mechanical
As an alternative to external fixators, intramedullary lengthening nails (ILNs) can be employed for distraction osteogenesis. While previous studies have demonstrated that typical complications of external devices, such as soft-tissue tethering, and pin site infection can be avoided with ILNs, there is a lack of studies that exclusively investigated tibial distraction osteogenesis with motorized ILNs inserted via an antegrade approach. A total of 58 patients (median age 17 years (interquartile range (IQR) 15 to 21)) treated by unilateral tibial distraction osteogenesis for a median leg length discrepancy of 41 mm (IQR 34 to 53), and nine patients with disproportionate short stature treated by bilateral simultaneous tibial distraction osteogenesis, with magnetically controlled motorized ILNs inserted via an antegrade approach, were retrospectively analyzed. The median follow-up was 37 months (IQR 30 to 51). Outcome measurements were accuracy, precision, reliability, bone healing, complications, and patient-reported outcome assessed by the Limb Deformity-Scoliosis Research Society Score (LD-SRS-30).Aims
Methods
Background:. It has been suggested that double-level osteotomy can prevent the occurrence of joint line obliquity (JLO), as one of the complications following high tibial osteotomy (HTO). In this study, we aimed to compare the preoperative distal femoral and proximal tibial obliquity in patients with primary genu varum with a group of normal subjects (without genu varum). Materials and methods:. 75 patients with primary genu varum and 75 normal persons, contributed to a case-control study. The medial distal femoral mechanical
We report the results of using a combination of fixator-assisted nailing with lengthening over an intramedullary nail in patients with tibial deformity and shortening. Between 1997 and 2007, 13 tibiae in nine patients with a mean age of 25.4 years (17 to 34) were treated with a unilateral external fixator for acute correction of deformity, followed by lengthening over an intramedullary nail with a circular external fixator applied at the same operating session. At the end of the distraction period locking screws were inserted through the intramedullary nail and the external fixator was removed. The mean amount of lengthening was 5.9 cm (2 to 8). The mean time of external fixation was 90 days (38 to 265). The mean external fixation index was 15.8 days/cm (8.9 to 33.1) and the mean bone healing index was 38 days/cm (30 to 60). One patient developed an equinus deformity which responded to stretching and bracing. Another developed a drop foot due to a compartment syndrome, which was treated by fasciotomy. It recovered in three months. Two patients required bone grafting for poor callus formation. We conclude that the combination of fixator-assisted nailing with lengthening over an intramedullary nail can reduce the overall external fixation time and prevent fractures and deformity of the regenerated bone.