Advertisement for orthosearch.org.uk
Results 1 - 2 of 2
Results per page:
Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_10 | Pages 26 - 26
1 Oct 2019
Poillot P Snuggs J Maitre CL Huyghe J
Full Access

Purpose and Background. The intervertebral disc is constantly subjected to forces generated by movement. But degeneration can disrupt normal biomechanics, generating uneven and complex loading patterns. Evidence suggests that these forces are converted into voltages through different mechanisms, such as streaming potentials. This implicates voltage-gated ion channels in the biological remodelling response of the disc to loading. These signalling pathways have not been studied, and this incomplete understanding of disc mechanotransduction may hinder regenerative therapies. The purpose of this study is to identify and determine the role of voltage-gated ion channels in the intervertebral disc and to investigate any changes in degeneration. Methods and Results. Primary bovine and human disc cells were cultured in monolayer or alginate beads for experiments. Cells were treated with altered osmolarity alone or in combination with IL-1β. Ion flux was measured through calcium influx and will be further investigated using the xCelligence RTCA CardioECR. Immunohistochemistry was performed on human and bovine discs to evaluate expression levels of ion channels. RNA was extracted from bovine NP cells and will be analysed through PCR/Microarray for gene expression. Conclusions. Preliminary results show that the Ca. v. 2.2 channel is expressed across the human disc, and is altered by degree of degeneration. Treatment with IL-1β may partly hinder the increase in calcium signalling of disc cells in response to lower osmolarity conditions. The presence of voltage-gated ion channels in the disc has been demonstrated for the first time. The role of these channels will be investigated through measuring ion flux with channel inhibitors across different culture treatments. No conflicts of interest exist. This research was supported by funding from the Society for Back Pain Research through the Travel Award 2019 and from the Irish Research Council under the Government of Ireland Postgraduate Scholarship Programme (GOIPG/2018/2416)


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 10 | Pages 1298 - 1304
1 Oct 2012
Hughes SPF Freemont AJ Hukins DWL McGregor AH Roberts S

This article reviews the current knowledge of the intervertebral disc (IVD) and its association with low back pain (LBP). The normal IVD is a largely avascular and aneural structure with a high water content, its nutrients mainly diffusing through the end plates. IVD degeneration occurs when its cells die or become dysfunctional, notably in an acidic environment. In the process of degeneration, the IVD becomes dehydrated and vascularised, and there is an ingrowth of nerves. Although not universally the case, the altered physiology of the IVD is believed to precede or be associated with many clinical symptoms or conditions including low back and/or lower limb pain, paraesthesia, spinal stenosis and disc herniation.

New treatment options have been developed in recent years. These include biological therapies and novel surgical techniques (such as total disc replacement), although many of these are still in their experimental phase. Central to developing further methods of treatment is the need for effective ways in which to assess patients and measure their outcomes. However, significant difficulties remain and it is therefore an appropriate time to be further investigating the scientific basis of and treatment of LBP.