Advertisement for orthosearch.org.uk
Results 1 - 20 of 23
Results per page:
Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 29 - 29
1 Mar 2021
Dalal S Aminake G Chandratreya A Kotwal R
Full Access

Abstract. Introduction. Long term survivorship in Total Knee Arthroplasty is significantly dependent on prosthesis alignment. The aim of this study was to determine, compare and analyse the coronal alignment of the tibial component of a single implant system using 3 different techniques. Method. Retrospective study of cases from a prospectively collected database. Radiological assessment included measurement of the coronal alignment of tibial components of total knee arthroplasties, and its deviation from the mechanical axis. A comparison study of intramedullary, extramedullary and tibial crest alignment methods was performed. Results. 66 consecutive patients (3 groups of 22 each). Mean BMI was 26. The mean angle of deviation from the mechanical axis was significantly lesser (p< 0.05) in the Tibial crest alignment group patients compared to the other 2 groups. Moreover, the number of outliers (+/-3 degrees) were 2 and 4 in the intra and extramedullary group, whereas there were none in the tibial crest group. The inter and intraclass correlation coefficient was 0.8 and 0.9 respectively. Conclusion. The Tibial Crest Alignment Technique is an effective technique to produce consistent results to achieve optimal coronal alignment of the tibial component in TKA, even in patients with high BMI. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 19 - 19
11 Apr 2023
Wyatt F Al-Dadah O
Full Access

Unicompartmental knee arthroplasty (UKA) and high tibial osteotomy (HTO) are well-established operative interventions in the treatment of knee osteoarthritis (KOA). However, which of these interventions is more beneficial, to patients with KOA, is not known and remains a topic of much debate. Aims: (i) To determine whether UKA or HTO is more beneficial in the treatment of isolated medial compartment KOA, via an assessment of patient-reported outcome measures (PROMs). (ii) To investigate the relationship between PROMs and radiographic parameters of knee joint orientation/alignment. This longitudinal observational study assessed a total of 42 patients that had undergone UKA (n=23) or HTO (n=19) to treat isolated medial compartment KOA. The PROMs assessed, pre-operatively and 1-year post-operatively, consisted of the: self-administered comorbidity questionnaire; short form-12; oxford knee score; knee injury and osteoarthritis outcome score; and the EQ-5D-5L. The radiographic parameters of knee joint alignment/orientation assessed, pre-operatively and 8-weeks post-operatively, included the: hip-knee-ankle angle; mechanical axis deviation; and the angle of the Mikulicz line. Statistical analysis demonstrated an overall significant (p<0.001), pre-operative to post-operative, improvement in the PROM scores of both groups. There were no significant differences in the post-operative PROM scores of the UKA and HTO group. Correlation analyses revealed that pre-operatively, a more distolaterally angled Mikulicz line was associated with worse knee function (p<0.05) and overall health (p<0.05); a relationship that, until now, has not been investigated nor commented upon within the literature. UKAs and HTOs are both efficacious operations that provide a comparable degree of clinical benefit to patients with isolated medial compartment KOA. To further the scientific/medical community's understanding of the factors that impact upon health-outcomes in KOA, future research should seek to investigate the mechanism underlying the relationship, between Mikulicz line and PROMs, observed within the current study


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 113 - 113
2 Jan 2024
García-Rey E Gómez-Barrena E
Full Access

Pelvic bone defect in patients with severe congenital dysplasia of the hip (CDH) lead to abnormalities in lumbar spine and lower limb alignment that can determine total hip arthroplasty (THA) patients' outcome. These variables may be different in uni- or bilateral CDH. We compared the clinical outcome and the spinopelvic and lower limb radiological changes over time in patients undergoing THA due to uni- or bilateral CHD at a minimum follow-up of five years. Sixty-four patients (77 hips) undergoing THA due to severe CDH between 2006 and 2015 were analyzed: Group 1 consisted of 51 patients with unilateral CDH, and group 2, 113 patients (26 hips) with bilateral CDH. There were 32 females in group 1 and 18 in group 2 (p=0.6). The mean age was 41.6 years in group 1 and 53.6 in group 2 (p<0.001). We compared the hip, spine and knee clinical outcomes. The radiological analysis included the postoperative hip reconstruction, and the evolution of the coronal and sagittal spinopelvic parameters assessing the pelvic obliquity (PO) and the sacro-femoro-pubic (SFP) angles, and the knee mechanical axis evaluating the tibio-femoral angle (TFA). At latest follow-up, the mean Harris Hip Score was 88.6 in group 1 and 90.7 in group 2 (p=0.025). Postoperative leg length discrepancy of more than 5 mm was more frequent in group 1 (p=0.028). Postoperative lumbar back pain was reported in 23.4% of the cases and knee pain in 20.8%, however, there were no differences between groups. One supracondylar femoral osteotomy and one total knee arthroplasty were required. The radiological reconstruction of the hip was similar in both groups. The PO angle improved more in group 1 (p=0.01) from the preoperative to 6-weeks postoperative and was constant at 5 years. The SFP angle improved in both groups but there were no differences between groups (p=0.5). 30 patients in group 1 showed a TFA less than 10º and 17 in group 2 (p=0.7). Although the clinical outcome was better in terms of hip function in patients with bilateral CDH than those with unilateral CDH, the improvement in low back and knee pain was similar. Patients with unilateral dysplasia showed a better correction of the PO after THA. All spinopelvic and knee alignment parameters were corrected and maintained over time in most cases five years after THA


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 86 - 86
2 Jan 2024
Feng M Dai S Ni J Mao G Dang X Shi Z
Full Access

Varus malalignment increases the susceptibility of cartilage to mechanical overloading, which stimulates catabolic metabolism to break down the extracellular matrix and lead to osteoarthritis (OA). The altered mechanical axis from the hip, knee to ankle leads to knee joint pain and ensuing cartilage wear and deterioration, which impact millions of the aged population. Stabilization of the remaining damaged cartilage, and prevention of further deterioration, could provide immense clinical utility and prolong joint function. Our previous work showed that high tibial osteotomy (HTO) could shift the mechanical stress from an imbalanced status to a neutral alignment. However, the underlying mechanisms of endogenous cartilage stabilization after HTO remain unclear. We hypothesize that cartilage-resident mesenchymal stem cells (MSCs) dampen damaged cartilage injury and promote endogenous repair in a varus malaligned knee. The goal of this study is to further examine whether HTO-mediated off-loading would affect human cartilage-resident MSCs' anabolic and catabolic metabolism. This study was approved by IACUC at Xi'an Jiaotong University. Patients with medial compartment OA (52.75±6.85 yrs, left knee 18, right knee 20) underwent open-wedge HTO by the same surgeons at one single academic sports medicine center. Clinical data was documented by the Epic HIS between the dates of April 2019 and April 2022 and radiographic images were collected with a minimum of 12 months of follow-up. Medial compartment OA with/without medial meniscus injury patients with unilateral Kellgren /Lawrence grade 3–4 was confirmed by X-ray. All incisions of the lower extremity healed well after the HTO operation without incision infection. Joint space width (JSW) was measured by uploading to ImageJ software. The Knee injury and Osteoarthritis Outcome Score (KOOS) toolkit was applied to assess the pain level. Outerbridge scores were obtained from a second-look arthroscopic examination. RNA was extracted to quantify catabolic targets and pro-inflammatory genes (QiaGen). Student's t test for two group comparisons and ANOVA analysis for differences between more than 2 groups were utilized. To understand the role of mechanical loading-induced cartilage repair, we measured the serial changes of joint space width (JSW) after HTO for assessing the state of the cartilage stabilization. Our data showed that HTO increased the JSW, decreased the VAS score and improved the KOOS score significantly. We further scored cartilage lesion severity using the Outerbridge classification under a second-look arthroscopic examination while removing the HTO plate. It showed the cartilage lesion area decreased significantly, the full thickness of cartilage increased and mechanical strength was better compared to the pre-HTO baseline. HTO dampened medial tibiofemoral cartilage degeneration and accelerate cartilage repair from Outerbridge grade 2 to 3 to Outerbridge 0 to 1 compared to untreated varus OA. It suggested that physical loading was involved in HTO-induced cartilage regeneration. Given that HTO surgery increases joint space width and creates a physical loading environment, we hypothesize that HTO could increase cartilage composition and collagen accumulation. Consistent with our observation, a group of cartilage-resident MSCs was identified. Our data further showed decreased expression of RUNX2, COL10 and increased SOX9 in MSCs at the RNA level, indicating that catabolic activities were halted during mechanical off-loading. To understand the role of cartilage-resident MSCs in cartilage repair in a biophysical environment, we investigated the differentiation potential of MSCs under 3-dimensional mechanical loading conditions. The physical loading inhibited catabolic markers (IL-1 and IL-6) and increased anabolic markers (SOX9, COL2). Knee-preserved HTO intervention alleviates varus malalignment-related knee joint pain, improves daily and recreation function, and repairs degenerated cartilage of medial compartment OA. The off-loading effect of HTO may allow the mechanoregulation of cartilage repair through the differentiation of endogenous cartilage-derived MSCs


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 121 - 121
1 Jul 2014
Boonen B Schotanus M Kerens B van der Wegen W Kort N
Full Access

Summary. Alignment results did not differ between PSG and conventional instrumentation. A small reduction in operation time and blood loss was found with the PSG system, but is unlikely of clinical significance. Length of hospital stay was identical for both groups. Introduction. Several techniques for aligning a TKA exist nowadays. Patient-specific guiding (PSG) has relatively recently been introduced to try to resolve the shortcomings of existing techniques while optimising the operative procedure. Still few reports have been published on the clinical outcome and on the peroperative results of this new technique. This prospective, double-blind, randomised controlled trial was designed to address the following research questions: 1. Is there a significant difference in outliers in alignment in the frontal and sagittal plane between PSG TKA and conventional TKA. 2. Is there a significant difference in operation time, blood loss and length of hospital stay between the 2 techniques. Patients & Methods. 180 patients were randomised for PSG TKA (group 1) or conventional TKA (group 2) in 2 centres. Patients were stratified per hospital. Alignment of the mechanical axis of the leg and flexion/extension and varus/valgus of the individual prosthesis components were measured on digital, standing, long-leg and standard lateral radiographs by 2 independent outcome assessors in both centres. Percentages of outliers, > 3°, were determined. We compared blood loss, operation time and length of hospital stay. Results. There was no statistically significant difference in mean mechanical axis or outliers in mechanical axis between groups. No statistically significant difference was found for the alignment of the individual components in the frontal plane, nor for the percentages of outliers. There was a statistically significant difference in outliers for the femoral component in the sagittal plane, with a higher percentage of outliers in the group 1 (p = 0.017). No such significant result was found for the tibial component in that plane. All interclass correlation coefficients were good. Blood loss was 100 mL less in group 1 (p = 0.000). Operation time was 5 minutes shorter in group 1 (p = 0.000). Length of hospital stay was almost identical with a mean of 3.6 days (p = 0.657). Discussion/Conclusions. The results in terms of obtaining a neutral mechanical axis and a correct position of the prosthesis components did not differ between groups. A small reduction in operation time and blood loss was found with the PSG system, but is unlikely of any clinical significance. Future research should especially focus on cost-effectiveness analysis and functional outcome of PSG TKA


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 63 - 63
1 Nov 2021
Visscher L White J Tetsworth K McCarthy C
Full Access

Introduction and Objective. Malunion after trauma can lead to coronal plane malalignment in the lower limb. The mechanical hypothesis suggests that this alters the load distribution in the knee joint and that that this increased load may predispose to compartmental arthritis. This is generally accepted in the orthopaedic community and serves as the basis guiding deformity correction after malunion as well as congenital or insidious onset malalignment. Much of the literature surrounding the contribution of lower limb alignment to arthritis comes from cohort studies of incident osteoarthritis. There has been a causation dilemma perpetuated in a number of studies - suggesting malalignment does not contribute to, but is instead a consequence of, compartmental arthritis. In this investigation the relationship between compartmental (medial or lateral) arthritis and coronal plane malalignment (varus or valgus) in patients with post traumatic unilateral limb deformity was examined. This represents a specific niche cohort of patients in which worsened compartmental knee arthritis after extra-articular injury must rationally be attributed to malalignment. Materials and Methods. The picture archiving system was searched to identify all 1160 long leg x ray films available at a major metropolitan trauma center over a 12-year period. Images were screened for inclusion and exclusion criteria, namely patients >10 years after traumatic long bone fracture without contralateral injury or arthroplasty to give 39 cases. Alignment was measured according to established surgical standards on long leg films by 3 independent reviewers, and arthritis scores Osteoarthritis Research Society International (OARSI) and Kellegren-Lawrence (KL) were recorded independently for each compartment of both knees. Malalignment was defined conservatively as mechanical axis deviation outside of 0–20 mm medial from centre of the knee, to give 27 patients. Comparison of mean compartmental arthritis score was performed for patients with varus and valgus malalignment, using Analysis of Variance and linear regression. Results. In knees with varus malalignment there was a greater mean arthritis score in the medial compartment compared to the contralateral knee, with OARSI scores 5.69 vs 3.86 (0.32, 3.35 95% CI; p<0.05) and KL 2.92 vs 1.92 (0.38, 1.62; p<0.005). There was a similar trend in valgus knees for the lateral compartment OARSI 2.98 vs 1.84 (CI −0.16, 2.42; p=0.1) and KL 1.76 vs 1.31 (CI −0.12, 1.01; p=0.17), but the evidence was not conclusive. OARSI arthritis score was significantly associated with absolute MAD (0.7/10mm MAD, p<0.0005) and Time (0.6/decade, p=0.01) in a linear regression model. Conclusions. Malalignment in the coronal plane is correlated with worsened arthritis scores in the medial compartment for varus deformity and may similarly result in worsened lateral compartment arthritis in valgus knees. These findings support the mechanical hypothesis that arthritis may be related to altered stress distribution at the knee, larger studies may provide further conclusive evidence


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 53 - 53
1 Nov 2021
ten Heggeler R Schröder F de Graaf F Fluit R Becea D Verdonschot N Hoogeslag R
Full Access

Introduction and Objective. After anterior cruciate ligament reconstruction one of the risk factors for graft (re-)rupture is an increased posterior tibial slope (PTS). The current treatment for PTS is a high tibial osteotomy (HTO). This is a free-hand method, with 1 degree of tibial slope correction considered to be equal to 1 or even 1.67 mm of the anterior wedge resection. Error rates in the frontal plane reported in literature vary from 1 – 8.6 degrees, and in the sagittal plane outcomes in a range of 2 – 8 degrees are reported when planned on PTSs of 3 – 5 degrees. Therefore, the free-hand method is considered to have limited accuracy. It is expected that HTO becomes more accurate with patient specific saw guides (PSGs), with an accuracy margin reported in literature of 2 degrees. This proof of concept porcine cadaver case study aimed to investigate whether the use of PSGs improves the accuracy of HTO to less than 2 degrees. Secondly, the reproducibility of tibial slope measurement was evaluated. Materials and Methods. Preoperative MRI images of porcine cadaver knees (n = 3) were used to create 3D anatomical bone models (Mimics, Materialise, Belgium). These 3D models were subsequently used to develop PSGs (3-Matic, Materialise, Belgium) to correct all tibias for 3 degrees PTS and 4 degrees varus. The PSG mediated HTOs were performed by an experienced orthopaedic surgeon, after which postoperative MRI images were obtained. 3D anatomical models of postoperative tibias were created, and tibial slopes were assessed on both pre- and postoperative tibias. The tibial slope was defined as the angle between the mechanical axis and 3D tibial reference plane in the frontal and sagittal plane. The accuracy of the PSG mediated HTO (median and range) was defined as the difference in all possible combinations of the preoperatively planned and postoperatively obtained tibial slopes. To ensure reproducibility, the pre- and postoperative tibial slopes were measured thrice by one observer. The intra-class correlation coefficients (ICCs) were subsequently calculated to assess the intra-rater reliability (SPSS, IBM Corp., Armonk, N.Y., USA). Results. An accuracy within 2 degrees was achieved in all three cases. The median and range in accuracy for each specimen were +0.46 (−0.57 – 1.45), +0.60 (−1.07 – 1.00), and +0.45 (−0.16 – 0.71) degrees in the frontal plane, and −0.45 (−1.97 – 1.22), −0.80 (−2.42 – 1.77), and 0.00 (−2.19 – 1.93) degrees in the sagittal plane. The pre- and postoperatively planned tibial slopes in the frontal and sagittal plane were measured with a good up to excellent reproducibility. The ICCs of the preoperative planned tibial slopes were 0.82 (95% CI, 0.11 – 1.0), and 0.77 (95% CI, 0.17 – 1.0) for the frontal and sagittal plane, respectively. Postoperative, the ICC for the frontal plane was 0.92 (95% CI, 0.43 – 1.0), and 0.67 (95% CI, −0.06 – 0.99) for the sagittal plane. Conclusions. This proof of concept porcine case study showed an accuracy for the PSG mediated HTO within 2 degrees for each specimen. Moreover, the tibial slopes were measured with a good up to excellent reproducibility. Therefore, the PSG mediated HTO seems to be accurate and might be better than the current used free-hand HTO method. These results offer perspective for implementation of PSG mediated HTO to correct PTS and metaphyseal varus


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 57 - 57
1 Mar 2021
Walker R Rye D Yoong A Waterson B Phillips J Toms A
Full Access

Abstract. Background. Lower limb mechanical axis has long been seen as a key to successful in lower limb surgery, including knee arthroplasty. Traditionally, coronal alignment has been assessed with weight-bearing lower limb radiographs (LLR) allowing assessment of hip-knee-ankle alignment. More recently CT scanograms (CTS) have been advocated as a possible alternative, having the potential benefits of being quicker, cheaper, requiring less specialist equipment and being non-weightbearing. Objectives. To evaluate the accuracy and comparability of lower limb alignment values derived from LLR versus CTS. Methods. We prospectively investigated patients undergoing knee arthroplasty with preoperative and postoperative LLR and CTS, analysing both preoperative and postoperative LLRs & CTS giving 140 imaging tests for direct comparison. We used two independent observers to calculate on each of imaging modalities, on both pre- and post-operative images, the: hip-knee-ankle alignment (HKA), lateral distal femoral angle (LDFA) and medial proximal tibial angle (MPTA). Results. 840 data points were captured from pre- and post-operative LLRs and CTSs. Analysis demonstrated very strong correlation in pre-operative HKA (LLR vs CTS, r = 0.917), post-operative HKAs (LLR vs CTS, 0.850) and postoperative LDFAs (LLR vs CTS, 0.850). Strong correlation was observed in pre-operative LDFAs (0.732), MPTAs (0.604), and post-operative MPTAs (0.690). Conclusion. Both pre- and post-operative LLR and CTS imaging display very strong correlation for HKA coronal alignment correlation, with strong correlation for other associated angles around the knee. Our results demonstrate that both LLR and CTS can be used interchangeably with similar results. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_4 | Pages 55 - 55
1 Apr 2018
Yabuno K Sawada N Hirohaku D
Full Access

Introduction. With the development of 3D printing technology, there are many different types of PSI in the world. The accuracy of patient specific instrumentation (PSI) in primary total knee arthroplasty (TKA) is dependent on appropriate placement of the cutting blocks. However, previous reports on one type of PSI measured the difference between postoperative prosthetic alignment and postoperative mechanical axis and thus these reports did not evaluate intraoperative comparison of PSIs between two different designs. The purpose of this study was to evaluate the intraoperative accuracy of two different designed PSIs (My knee, Medacta International, Castel San Pietro, Switzerland) with two examiners using CT free navigation system (Stryker, Mahwar, NJ, USA) in regards to sagittal and coronal alignment. Methods. We enrolled 78knees (66 patients) with a primary cemented TKA using two different designed CT-based PSIs (My knee, Medacta International, Castel San Pietro, Switzerland). All operations were performed by two senior surgeons who have experience with greater than 500 TKAs and greater than 200 navigated TKAs. Two examiners were same two surgeons. The study period was between June 2015 and November 2016. The local ethics' committee approved the study prior to its initiation, and informed consent was obtained from all patients. After placement of the PSI on the femur and tibia, the position of the PSI was evaluated by s intraoperative navigation. Two examiners placed two different types (STD(standard) and MIS(minimum invasive surgery)) of PSI on same joint. As required by the PSI, only soft- tissue was removed and osteophytes were left in place. Femoral MIS PSI was required partial remove of lateral cartilage. For the femur, the coronal position in relation to the mechanical axis were documented. For the tibia, the coronal alignment and the tibial slope were documented. Of note, intraoperative modifications to the PSI were not made based upon the results of the navigation. Rather, the findings of the intraoperative navigation were simply documented. Results. The mean age of the cohort was 72.9±7.5years (range, 55–85years). The study included 11men and 55women, with a mean height of 151±8.2cm (range, 135–175cm), mean weight of 59.4±4.3kg (range, 42–82kg), and a mean of Body Mass Index of 25.9±3.6 (range, 17.2–36.4). HKA angle (supine position) measured by CT was 170.8 ±4.4 degree(range, 162.5–182degree). Diagnosis was osteoarthritis in all patient. There was no statistically significant difference in PSI position alignment for femoral flexion, tibial coronal angle, tibial slope between the two groups with two examiners. However, the intraoperative coronal position using the femoral STD PSI significantly deviated from using femoral MIS PSI from both examiners. (PSI vs. MIS, examiner1 p = 0.02, examiner2 p=0.04)


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_8 | Pages 31 - 31
1 Apr 2017
Meijer M Boerboom A Bulstra S Reininga I Stevens M
Full Access

Background. Achieving optimal prosthesis alignment during total knee arthroplasty (TKA) is essential. Imageless computer-assisted surgery (CAS) is developed to improve knee prosthesis alignment and with CAS it is possible to perform intraoperative alignment measurements. Lower limb alignment measurements are also performed for preoperative planning and postoperative evaluation. A new stereoradiography system, called EOS, can be used to perform these measurements in 3D and thus measurement errors due to malpositioning can be eliminated. Since both CAS and EOS are based on 3D modeling, measurements should theoretically correlate well. Therefore, objective was to compare intraoperative CAS-TKA measurements with pre- and postoperative EOS 3D measurements. Methods. In a prospective study 56 CAS-TKAs were performed and alignment measurements were recorded two times: before bone cuts were made and after implantation of the prosthesis. Pre- and postoperative coronal alignment measurements were performed using EOS 3D. CAS measurements were compared with EOS 3D reconstructions. Measured angles were: varus/valgus (VV), mechanical lateral distal-femoral (mLDFA) and medial proximal tibial angle (mMPTA). Results. Significantly different VV angles were measured pre- and postoperatively with CAS compared to EOS. For preoperative measurements, mLDFA did not differ significantly, but a significantly larger mMPTA in valgus was measured with CAS. Conclusions. EOS 3D measurements overestimate VV angle in lower limbs with substantial mechanical axis deviation. For lower limbs with minor mechanical axis deviation as well as for mMPTA measurements, CAS measures more valgus compared to EOS. Results of this study indicate that differences in alignment measurements between CAS measurements and pre- and postoperative EOS 3D are mainly due to the difference between weight bearing and non-weight bearing position and potential errors in validity and reliability of the CAS system. Surgeons should be aware of these measurement differences and the pitfalls of both measurement techniques. Level of evidence. IIb. Disclosures. The department of Orthopaedics, University of Groningen, University Medical Center Groningen receives research institutional support from InSpine (Schiedam, NL) and Stryker (Kalamazoo, Mich. USA). One of the authors (ALB) will be and has been paid as a consultant by Zimmer (Warsaw, IN, USA) for purposes of education and training in knee arthroplasty


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 53 - 53
1 Jan 2017
Verstraete M Meere P Salvadore G Victor J Walker P
Full Access

A correct ligament loading following TKA surgery is believed to minimize instability and improve patient satisfaction. The evaluation of the ligament stress or strain is however impractical in a surgical setting. Alternatively, tibial trial components containing force sensors have the potential to indirectly assess the ligament loading. These instrumented components quantify the medial and lateral forces in the tibiofemoral joint. Although this method finds clinical application already, the target values for both the force magnitude and medial / lateral force ratio under surgical conditions remain uncertain. A total of eight non-arthritic cadaveric knees have been tested mimicking surgical conditions. Therefore, the specimens are mounted in a custom knee simulator. This simulator allows to test full lower limb specimens, providing kinematic freedom throughout the range of motion. Knee flexion is obtained by lifting the femur (thigh pull). Knee kinematics are simultaneously recorded by means of a navigation system and based on the mechanical axis of the femur and tibia. In addition, the load transferred through the medial and lateral compartment of the knee is monitored. Therefore, a 2.4 mm thick sawing blade is used to machine a slot in the tibia perpendicular to the mechanical axis, at the location of the tibial cut in TKA surgery. A complete disconnection was thereby assured between the tibial plateau and the distal tibia. To fill the created gap, custom 3D printed shims were inserted. Through their specific geometry, these shims create a load deviation between two Tekscan pressure pads on the medial and lateral side. Following the insertion of the shims, the knee was closed before performing the kinematic and kinetic tests. Seven specimens showed a limited varus throughout the range of motion (ranging from 1° to 7° varus). The other knee was in valgus (4° valgus). Amongst varus knees, the results were very consistent, indicating high loads in full extension. Subsequently, the loads decrease as the knee flexes and eventually vanishes on the lateral side. This leads to consistently high compartmental load ratios (medial load / total load) in flexion. In full extension the screw-home mechanism results in increased loads, both medially and laterally. Upon flexion, the lateral loads disappear. This is attributed to slackening of the lateral collateral ligament, in turn linked to the femoral rollback and slope of the lateral compartment. The isometry of the medial collateral ligament contributes on the other hand to the near-constant load in the medial compartment. The above particularly applies for varus knees. The single valgus knee tested indicated a higher load transmission by the lateral compartment, potentially attributed to a contracture of the lateral structures. With respect to TKA surgery, these findings are particularly relevant when considering anatomically designed implants. For those implants, this study concludes that a tighter medial compartment reflects that of healthy varus knees. Be aware however that in full extension, higher and up to equal loads can be acceptable for the medial and lateral compartment


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 5 | Pages 683 - 690
1 May 2009
Victor J Van Doninck D Labey L Van Glabbeek F Parizel P Bellemans J

The understanding of rotational alignment of the distal femur is essential in total knee replacement to ensure that there is correct placement of the femoral component. Many reference axes have been described, but there is still disagreement about their value and mutual angular relationship. Our aim was to validate a geometrically-defined reference axis against which the surface-derived axes could be compared in the axial plane. A total of 12 cadaver specimens underwent CT after rigid fixation of optical tracking devices to the femur and the tibia. Three-dimensional reconstructions were made to determine the anatomical surface points and geometrical references. The spatial relationships between the femur and tibia in full extension and in 90° of flexion were examined by an optical infrared tracking system. After co-ordinate transformation of the described anatomical points and geometrical references, the projection of the relevant axes in the axial plane of the femur were mathematically achieved. Inter- and intra-observer variability in the three-dimensional CT reconstructions revealed angular errors ranging from 0.16° to 1.15° for all axes except for the trochlear axis which had an interobserver error of 2°. With the knees in full extension, the femoral transverse axis, connecting the centres of the best matching spheres of the femoral condyles, almost coincided with the tibial transverse axis (mean difference −0.8°, . sd. 2.05). At 90° of flexion, this femoral transverse axis was orthogonal to the tibial mechanical axis (mean difference −0.77°, . sd. 4.08). Of all the surface-derived axes, the surgical transepicondylar axis had the closest relationship to the femoral transverse axis after projection on to the axial plane of the femur (mean difference 0.21°, . sd. 1.77). The posterior condylar line was the most consistent axis (range −2.96° to −0.28°, . sd. 0.77) and the trochlear anteroposterior axis the least consistent axis (range −10.62° to +11.67°, . sd. 6.12). The orientation of both the posterior condylar line and the trochlear anteroposterior axis (p = 0.001) showed a trend towards internal rotation with valgus coronal alignment


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 69 - 69
1 Dec 2020
LI Y LI L FU D
Full Access

Objective. To analyze the short-term outcome after medial open-wedge high tibial osteotomy with a 3D-printing technology in early medial keen osteoarthritis and varus malalignment. Design and Method. 32 knees(28 cases) of mOWHTO (fixation with an angular-stable TomoFix implant(Synthes)) with a 3D-printing technology combined with arhtroscopy were prospectively surveyed with regard to functional outcome(Hospital for special knee score [HSS] score). Pre- and postoperative tibial bone varus angle (TBVA), mechanical medial proximal tibial angle (MPTA), and alignment were analyzed with regard to the result. Results. 32 knees were included (28 patients; mean age 46.5±9.3 years). The follow-up rate was 100% at 1.7±0.6 years (range, 1.2–3.2 years). Pre- and postoperative mechanical tibiofemoral axis were 6.8°±2°of varus and 1.2°± 3.4° of valgus, respectively. HSS score significantly improved from 46.0±18.3 preoperatively to 84±12 at one, 80±7 at two years (P<0.01). Conclusions. Medial open-wedge high tibial osteotomy with a 3D-printing technology combined with arthroscopy in medial keen osteoarthritis and varus malalignment is an accurate and good treatment option. High preoperative TBVA and appropriate corrected angle(0–3° of valgus)) was associated with better functional outcome at final follow-up


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_8 | Pages 34 - 34
1 Apr 2017
Hadi M Barlow T Ahmed I Dunbar M Griffin D
Full Access

Background. Total Knee Replacement (TKR) is an effective treatment for knee arthritis. One long held principle of TKRs is positioning the components in alignment with the mechanical axis to restore the overall limb alignment to 180 ± 3 degrees. However, this view has been challenged recently. Given the high number of replacements performed, clarity on this integral aspect is necessary. Our objective was to investigate the association between malalignment and outcome (both PROMs and revision) following primary TKR. Metod. A systematic review of MEDLINE, CINHAL, and EMBASE was carried out to identify studies published from 2000 onwards. The study protocol including search strategy can be found on the PROSPERO database for systematic reviews. Results. From a total of 2107 citations, 18 studies, comprising of 2,214 patients, investigated the relationship between malalignment and PROMs. Overall 41 comparisons were made between a malalignment parameter and a PROM. Eleven comparisons (27%) demonstrated an association between malalignment and worse PROMs, with 30 comparisons (73%) demonstrating no association. Eight studies investigated the relationship between malalignment and revision. Four studies found an association between a measure of coronal alignment and revision rate, with four not demonstrating an association. Only one study examined axial and sagittal alignment and found an association with revision rates. Conclusion. When considering malalignment in an individual parameter, there is an inconsistent relationship with outcome. Malalignment may be related to worse outcome, but if that relationship exists it is weak and of dubious clinical significance. However, this evidence is subject to limitations mainly related to the methods of assessing alignment post operatively and by the possibility that the premise of traditional mechanical alignment is erroneous. Larger longitudinal studies with a standardised, timely, and robust method for assessing alignment outcomes are required. Level of evidence. 2a


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 113 - 113
1 Jan 2017
Iranpour F
Full Access

Constitutional knee varus increases the risk of medial OA disease due to increase in the knee adduction moment and shifting of the mechanical axis medially. Hueter-Volkmann’s law states that the amount of load experienced by the growth plate during development influences the bone morphology. For this reason, heightened sports activity during growth is associated with constitutional varus due to added knee adduction moment. In early OA, X-rays often show a flattened medial femoral condyle extension facet (EF). However, it is unknown whether this is a result of osteoarthritic wear, creep deformation over decades of use, or an outcome of Hueter-Volkmann’s law during development. A larger and flattened medial EF can bear more weight, due to increased load distribution. However, a flattened EF may also extrude the meniscus, leading meniscus degeneration and joint failure. Therefore, this study aimed to investigate whether varus knees have flattened medial EFs of both femur and tibia in a cohort of patients with no signs yet of bony attrition. Segmentation and morphology analysis was conducted using Materialise software (version 8.0, Materialise Inc., Belgium). This study excluded knees with bony attrition of the EFs based on Ahlbäck criteria, intraoperative findings, and operation notes history. Standard reference frames were used for both the femur and tibia to ensure reliable and repeatable measurements. The hip-knee-angle (HKA) angle defined varus or valgus knee alignment. Femur: The femoral EFs and flexion facets (FFs) had best-fit spheres fitted with 6 repetitions. Tibia: The slopes of the antero-medial medial tibial plateau were approximated using lines. Results 72 knees met the inclusion and exclusion criteria. The average age was 59 ± 11 years. The youngest was 31 and the oldest 84 years. Thirty-three were male and 39 were female. There was good intra- and inter-observer reliability for EF sphere fitting. Femur: The results demonstrated that the medial femoral condyle EF is flattened in knees with constitutional varus, as measured by the Sphere Ratios between the medial and lateral EF (varus versus straight: p = 0.006), and in the scaled values for the medial EF sphere radius (varus versus straight: p = 0.005). There was a statistically significant, moderate and positive correlation between the medial femoral EF radius, and the medial femoral EF-FF AP offset. Tibia: There was a statistically significant difference between the steepness of the slopes of the medial tibial plateau EF in varus and valgus knees, suggesting varus knees have a less concave (flatter) medial EF. Conclusions In comparison to straight knees, varus knees have flattened medial EFs in both femur and tibia. As this was the case in knees with no evidence of bony attrition, this could mean flattened medial EFs may be a result of medial physis inhibition during development, due to Hueter-Volkmann’s law. Flattened medial EFs may increase load distribution in the medial compartment, but could also be a potential aetiology in primary knee OA due to over extrusion of the medial meniscus and edge loading


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_2 | Pages 23 - 23
1 Jan 2017
Kono K Tomita T Futai K Yamazaki T Fujito T Tanaka S Yoshikawa H Sugamoto K
Full Access

The purpose of this study is to investigate the three-dimensional (3D) kinematics of normal knees in deep knee-bending motions like squatting and kneeling. Material & Methods: We investigated the in vivo kinematics of 4 Japanese healthy male volunteers (8 normal knees in squatting, 7 normal knees in kneeling). Each sequential motion was performed under fluoroscopic surveillance in the sagittal plane. Femorotibial motion was analyzed using 2D/3D registration technique, which uses computer-assisted design (CAD) models to reproduce the spatial position of the femur and tibia from single-view fluoroscopic images. We evaluated the femoral rotation relative to the tibia and anteroposterior (AP) translation of the femoral sulcus and lateral epicondyle on the plane perpendicular to the tibial mechanical axis. Student's t test was used to analyze differences in the absolute value of axial rotation and AP translation of the femoral sulcus and lateral epicondyle during squatting and kneeling. Values of P < 0.05 were considered statistically significant. During squatting, knees were gradually flexed from −2.8 ± 1.3° to 145.5 ± 5.1° on average. Knees were gradually flexed from 100.8 ± 3.9° to 155.6 ± 3.2° on average during kneeling. Femurs during squatting displayed sharp external rotation relative to the tibia from 0° to 30° of flexion and it reached 12.5 ± 3.3° on average. From 30° to 130° of flexion, the femoral external rotation showed gradually, and it reached 19.1 ± 7.3° on average. From 130° to 140° of flexion, it was observed additionally, and reached 22.4 ± 6.1° on average. All kneeling knees displayed femoral external rotation relative to the tibia sharply from 100° to 150° of flexion, and it reached 20.7 ± 7.5° on average. From 100° to 120° of flexion, the femoral external rotation during squatting was larger than that during kneeling significantly. From 120° to 140° of flexion, there was no significant difference between squatting and kneeling. The sulcus during squatting moved 4.1 ± 4.8 mm anterior from 0° to 60° of flexion. From 60° of flexion it moved 13.6 ± 13.4 mm posterior. The sulcus during kneeling was not indicated significant movement with the knee flexion. The lateral epicondyle during squatting moved 39.4 ± 7.7 mm posterior from 0° to 140° of flexion. The lateral epicondyle during kneeling moved 22.0 ± 5.4 mm posterior movement from 100° to 150° of flexion. In AP translation of the sulcus from 100° to 140° of flexion, there was no significant difference between squatting and kneeling. However in that of the lateral epicondyle, squatting groups moved posterior significantly. Even if they were same deep knee-bending, the kinematics were different because of the differences of daily motions. The results in this study demonstrated that in vivo kinematics of deep knee-bending were different between squatting and kneeling


The Journal of Bone & Joint Surgery British Volume
Vol. 79-B, Issue 3 | Pages 462 - 466
1 May 1997
Vasudevan PN Vaidyalingam KV Nair PB

In 1895 Trendelenburg described his sign to determine the integrity of hip function. We found the sign to be positive in a patient whose hip was clinically and radiologically normal, and therefore investigated this in other patients. We confirmed that a medial shift of the mechanical axis of the leg below the hip may cause a positive Trendelenburg sign. This has not been previously described


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 335 - 335
1 Jul 2014
Tai T Lai K
Full Access

Summary Statement. We present a simple and useful geometrical equation system to carry out the pre-operative planning and intra-operative assessments for total knee arthroplasty. These methods are extremely helpful in severely deformed lower limbs. Introduction. Total knee arthroplasty is a highly successful surgery for most of the patients with knee osteoarthritis. With commercial instruments and jigs, most surgeons can correct the deformity and provided satisfactory results. However, in cases with severe extra-articular deformity, the instruments may mislead surgeons in making judgment of the true mechanical axis. We developed a geometrical equation system for pre-operative planning and intra-operative measurement to perform correct bony cuts and achieve good post-operative axis. Patients & Methods. From 2008 to 2012, twenty-four patients with severe extra-articular deformities of low limbs underwent total knee arthroplasties for osteoarthritis. The deformities included malunion of femoral or tibial shafts with angulation, non-union of femoral supracondylar fractures, failed high tibia osteotomies, severe bowing of femurs, and other post-traumatic sequelae. The intra-medullary or extra-medullary guide devices were not possible to provide correct axis in these cases. For pre-operative planning, we analyzed the deformities on triple-film scanography and standing anterior-posterior and lateral X-ray films. The angles needed to be corrected in coronal and sagittal planes were measured. A geometrical equation system was applied to calculate the thickness of the proximal tibia cut and distal femoral cut. If the flexion contracture was presented, the degree of necessary elevation of joint line was also calculated. Intra-operatively, the degree of rotation of anterior and posterior femoral cuts was assessed after proximal tibial and distal femoral cuts. The sizes of prosthesis were judged according to the balance between flexion and extension gaps. A 3-in-1 jig was used for chamfering of the femur. After fine-tuning of bony cuts and balancing of soft tissue, the prostheses were cemented. The conventional intra-medullary and extra-medullary guiding devices were not used during the whole procedure. Results. All of the patients achieved satisfactory results in the aspect of pain relief and functional outcomes. All patients had good post-operative axis in coronal plane (varus or valgus deformity < 3 degrees). Twenty-two patients (92%) achieved good sagittal alignments (deformity < 3 degrees). The results were compatible with those in the patient population without those severe deformities. There was no major complication among these patients. Discussion/Conclusion. In this series, we present a simple and useful geometrical equation system to carry out the pre-operative planning and intra-operative assessments for total knee arthroplasty. These methods are extremely helpful in severely deformed lower limbs. Optimal post-operative alignments were achieved in this series and no major complication was found


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 185 - 185
1 Jul 2014
Amirouche F Solitro G Gonzalez M
Full Access

Summary Statement. A FEA model built from CT-data of frozen cadaver has been validated and used for under-reaming experiments. 1 mm under-reaming can provide contact surface and micromotions that are acceptable and within the clinical relevance without high impact force. Introduction. Long-term cup fixation and stability in total hip arthroplasty (THA) is directly related to the bone ingrowths between the porous cup and the acetabulum. To achieve the initial cup setting, 1 mm of under reaming is becoming the gold standard for cementless cup and what is at stake is usually the actual contact between cup and acetabulum wall. During impact and cup placement, friction forces are generated from the “not permanent” deformations of the acetabular wall that are translated into a gap between the reamed bone and the cup. Clinically the surgeon objective is to have the gap extended to a limited portion of the cup in order to improve bone ingrowth. Hence, the need arises from examining this cup bone stability interface by examining the selected “under reaming” conditions, the surface of contact between the acetabular cup and the bone and its relation to the impact force resulting from the hammering of the cup. Patients & Methods. A validated finite element model built from CT data of fresh frozen hip cadavers has been used for under-reaming mechanically testing experiment. The model was constrained at the sacral and pubic joints to mimic the exact fixation and potting of the pelvis used for testing, and an “impactor” model was used to force the cup into the acetabular reamed socket for both 1 and 2 mm under reaming conditions of the selected cup sizes. Three impact conditions were simulated by imposing cup displacements equivalent to 80, 100 and 120% of the initial distance between the cup apex and the bone. The corresponding reactions forces were evaluated as ideal insertion forces. After the loading phase, a relaxing phase was defined by the removal of load to determine the equilibrium position between the friction forces and the elastic deformation of the actabulum bone. In our last phase, the cup is loaded with a 1500N along the femoral mechanical axis following the same loading conditions of our cup-bone interface experimental setup. Results. The value of under-reaming plays a significant role in the hammering force due to cup placement and has a high correlation with the surface in contact in all cases of implantation, as well as the final stability of the cup throughout loading. When comparing the 2 mm with 1 mm of bone under-reaming we found that the higher degree of under-reaming resulted in slightly greater surface area of contact between the cup and bone as well as reduced micromotion at loading up to 1500 N. However, the impact force requirements for 2mm under reaming was found to be much higher in all three cases investigated. Discussion/Conclusion. Our results indicate that 1 mm under reaming can provide contact surface and micromotions that are both acceptable and within the clinical relevance of cup bone stability without the need of high impact force needed to insert the cup to its desired depth. High insertion forces may lead or cause risk of fracture


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 151 - 151
1 Jul 2014
van Leeuwen J Röhrl S Grøgaard B Snorrason F
Full Access

Summary Statement. Our data suggest that postoperative component positioning in TKA with PSPG is not consistent with pre-operative software planning. More studies are needed to rule out possible learning curve in this study. Introduction. Patient specific positioning guides (PSPGs) in TKA are based on MRI or CT data. Preoperatively, knee component positions can be visualised in 3-dimensional reconstructed images. Software allows anticipation of component position. From software planning PSPGs are manufactured and those PSPGs represent intra-operative component alignment. To our knowledge, there are no studies comparing pre-operative software planning with post-operative alignment. Aim of this study is to investigate the correlation between pre-operative planning of component positioning and the post-operative achieved alignment with PSPG technique. Patients & Methods. The first 25 TKA (cemented Vanguard® Complete Knee System, Biomet) with PSPG (Signature™ Biomet) performed at Telemark Hospital in 2009–2010 and the first 17 TKA with PSPG performed at Oslo University Hospital in 2010–2011 were included. A postoperative CT scanning and measurement protocol was used (Perth protocol). CT measurements were performed by 2 independent observers and comparative with pre-operative software (Materialise) planning. Component position angles of femur and tibia were measured. Mechanical axis for both femoral and tibial component angles in all planes was defined as zero degrees. Target angle for femoral component in sagittal plane was set to 2,8 degrees flexion on average and for the tibial tray to 3 degrees of posterior slope. Tibial rotation was in most cases obtained by using extra-medullary guide and therefore not included in this study. Results. In respectively coronal, sagittal and axial plane the femoral component angle was on average 1.2° in varus, SD 1.6 (1.7° valgus −4.5° varus), 4.4° in flexion, SD 3.9 (17.3° flexion −1.6° extension) and 0.5° in external rotation, SD 0.1 (2.3° internal rotation −4.3° external rotation). For the tibial component angle the component was on average 0,5° in varus (3.5° valgus −7.3° varus) and 3.7° posterior slope, SD 2.3 (8.8° flexion −2.4° extension). Intra-class correlation (ICC) between the 2 independent observers was for femoral component in coronal, sagittal and axial plane 0.85, 0.93 and 0.63 and tibial component in coronal and sigittal plane 0.94 and 0.95. Discussion/Conclusion. We expected that our measurements would be close to the pre-operative values. Although the mean values of post-operative measurements are close to pre-operative software planning, we found a considerable spread. Possible explanation might be error levels in pre-operative wrong identification of landmarks from MRI and/or different identification of bony landmarks on CT and intra-operative errors. All measurements were performed from the first Signatures performed in both hospitals. An early learning curve might explain some of the outliers. Time between manufacturing date and performed operation was in most cases several months, but less than the advocated 6 months. This time gap can theoretically provide a less proper fit in some cases due to slight change of anatomy in a progressive osteoarthritis. Our data suggest that postoperative positioning is not consistent with preoperative planning. This may be caused by the an early learning curve. It is uncertain whether this inconsistency is of clinical relevance. More data is necessary to prove any benefit of PSPG compared to existing procedures for TKA