Advertisement for orthosearch.org.uk
Results 1 - 20 of 22
Results per page:
Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_10 | Pages 48 - 48
1 Oct 2022
Bos K v. Dorp A Koch BC Ringeling L Veltman ES v. Oldenrijk J
Full Access

Aim. The current antibiotic treatment of periprosthetic joint infection (PJI) is optimized by measuring concentrations in plasma. However, it remains unclear whether effective concentrations of the antibiotics are reached at the site of PJI. Nonetheless, adequate target site concentrations are important to achieve effective eradication of the micro-organism. In order to determine the efficacy of cefuroxime and flucloxacillin in synovial fluid, synovial tissue and bone tissue in relation to the minimal inhibitory concentration (MIC) of the pathogen causing the PJI, we perform a pharmacokinetic/pharmacodynamic (PK/PD) study. Therefore, we aimed to develop validated analytical methods for analysis of cefuroxime and flucloxacillin in synovial fluid, synovial tissue and bone tissue. Method. Blank samples of synovial fluid, synovial tissue and bone tissue were obtained by orthopedic surgeons during surgery. For validation the samples of each matrix were spiked with both cefuroxime and flucloxacillin. Synovial tissue and bone tissue was pulverized with a mikro-dismembrator. Samples were kept frozen at −20°C until analysis. After a sample preparation quantification of cefuroxime and flucloxacillin in each matrix was performed on the ultra-performance convergence chromatography-tandem mass spectrometry (UPC2-MS/MS). Stable-isotope-labeled meropenem-d6 served as internal standard. The linearity, limits of quantification, accuracy and precision and carry-over were determined for all methods separately. The methods were validated according to the European Medicine Agency (EMA) and Food and Drug Administration (FDA) guidelines on bioanalytical method validation. Results. These methods were successfully validated for cefuroxime and flucloxacillin quantification in all matrices according to the EMA and FDA guidelines. The limits of quantification were adequate to cover potential cefuroxime and flucloxacillin concentration in synovial fluid, synovial tissue and bone tissue as described in literature, with a range of 1–100mg/L for synovial fluid and 1–20 µg/g for synovial tissue and bone tissue (r >0.995). Accuracy and within-run precision were validated according to acceptance values (RSD <15%). Carry over was less than 20%. Matrix effects and recovery were investigated for synovial fluid. The results were within the range of 80–120%. Conclusions. The results of the validation fall within the limits of quantification according to the EMA and FDA guidelines. Therefore, these methods can be applied during a PK/PD study to discover the exposure of antibiotics in synovial fluid, synovial tissue and bone tissue at the site of infection in patients with a PJI


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_8 | Pages 37 - 37
10 May 2024
Woodfield T Major G Longoni A Simcock J Hooper G Lim K
Full Access

Introduction. Autologous fat grafting has favourable potential as a regenerative strategy and is the current gold-standard to repair large contour defects, as needed in breast reconstruction after mastectomy and traumatic soft tissue reconstruction. Clinically, there is a limit on the volume of lipoaspirate which can be utilised to repair a soft-tissue defect. Surgical complications are the result of poor structural fidelity of lipoaspirate and graft resorption as a filling material and are hindered further by poor graft vascularisation. This study aims to develop injectable lipoaspirate-derived adipose tissue grafts with enhanced biologically and clinically-admissible structural and functional properties adopting light photocrosslinking of unmodified lipoaspirate. Methods. Patient-derived lipoaspirate was harvested and crosslinked using novel photoinitiator and exposure to visible light (wavelength 450nm) in surgery, establishing bonds between extracellular matrix (ECM) proteins within the material. The degree of crosslinking was tuned (photoinitiator concentration, light exposure, light intensity) and covalent bond formation measured using mass spectrometry. To predict patient response, SWATH-MS was used to identify differences in patient ECM and crosslinked grafts were implanted in vivo using a subcutaneous mouse model. Functional vessel formation and resorption were quantified using micro-CT and tissue-remodelling was assessed via histology. Results. There was an increase in the relative abundance of covalent bonds present with increasing degree of crosslinking. When injected, crosslinked lipoaspirate had better shape fidelity compared with native lipoaspirate – demonstrated by a smaller fibre diameter. Crosslinked lipoaspirate remained viable over long term culture and resulted in more predictable resorption profiles when implanted in vivo. Conclusions. The crosslinking approach described here is tunable and functional across different patient samples. Improving the structural properties of lipoaspirate through minimal manipulation has clinical utility for the delivery of grafts with higher shape fidelity and therefore increased graft survival when implanted


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_17 | Pages 40 - 40
24 Nov 2023
Erdmann J Clauss M Khanna N Kühl R Linder F Mathys M Morgenstern M Ullrich K Rentsch K
Full Access

Aim. Antibiotic concentration at the infected site is a relevant information to gain knowledge about deep-seated infections. The combination of antibiotic therapy and debridement is often indicated to treat these infections. At University Hospital Basel the most frequently administered antibiotic before debridement is amoxicillin in combination with clavulanic acid. Amoxicillin is a fragile beta-lactam antibiotic that brings multiple challenges for its quantification. As for many sample materials only little material is available, the aim of this work was to establish a sensitive and reliable quantification method for amoxicillin that only requires a small sample mass. We did not quantify clavulanic acid as we focused on the drug with antibiotic action. Method. Usually discarded sample material during debridement was collected and directly frozen. The thawed tissues were prepared using simple protein precipitation and manual homogenization with micro pestles followed by a matrix cleanup with online solid-phase extraction. Separation was performed by HPLC followed by heated electrospray ionization and tandem mass spectrometry. Results. During method development, amoxicillin showed partial formation of a covalent methanol adduct when performing protein precipitation. Furthermore, multiple in-source products of amoxicillin during ionization could be observed. Adding an aqueous buffer to the samples before protein precipitation and summing up the signals of amoxicillin and its in-source acetonitrile-sodium-adduct led to successful method validation for a calibration range of 1–51 mg/kg using 10 mg of each tissue sample. The imprecision was < 8% over the entire concentration range and the bias was ≤ 10 %. The quantitative matrix effect was < 6 % in six different tissue samples. Until now we measured amoxicillin in samples from nine patients with prosthetic joint infection, bursitis, or an abscess who obtained amoxicillin between 5 hours and 15 minutes before sampling and found concentrations between 1.4 and 35 mg/kg. Conclusions. With this method, we developed a fast, simple, and sensitive quantification assay for amoxicillin in tissue samples with little material that can now be applied to different study samples


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_19 | Pages 81 - 81
22 Nov 2024
de Waard G Veltman W van Oldenrijk J Bos K Koch B
Full Access

Aim. Prosthetic joint infections (PJI) are a common reason for revisions in patients that underwent total arthroplasty of the hip (THA) or knee (TKA). Extensive antibiotic treatment follows while a clear understanding of target site concentrations is lacking. The aim is to investigate the target site concentrations, like bone and synovial tissue concentrations, which consequently may lead to an optimisation of the dosing regiments of cefuroxime of PJI patients suffering from pain and immobility. Dosing optimisation may lead to a reduced risk of (re-)infection and adverse effects like renal-insufficiency and therefore lower health-care costs. Method. Patients (n=26) with PJI of hip or knee undergoing a one- or two-stage revision treated with cefuroxime were included as part of the ASTERICS study. During implant removal two samples were collected 15-30 and 60-120 minutes after IV infusion of plasma, bone tissue and synovial tissue and one synovial fluid sample. Samples were analysed using a UltraPerformance Convergence Chromotography – quadruple mass spectrometry system (UPC. 2. -MS/MS). Bone tissue and synovial tissue were pulverized before analysis acquiring for bone tissue a homogenate of cortical and cancellous bone. Using nonlinear mixed effect modelling (NONMEM) a base model was developed to analyse the bone to plasma ratio of cefuroxime in osteomyelitis patients. Results. Mean bone concentrations (mg/L) of cefuroxime at 30-60 min after IV administration in the knee and hip are 21.29 (SD:11.86) and 19.06 (SD: 11.79) respectively and 8.23 (SD:4.90) and 9.67 (SD:9.75) respectively at 90-120 min after IV administration. The penetration of cefuroxime described by the bone:plasma ratio into knee and hip affected by osteomyelitis is 0.3 and 0.4 respectively within 1 hour and 0.1 for both joints within 2 hours. The results mentioned here were collected during knee operations without blood void conditions. Concentration data was used to develop a base pharmacokinetic model using NONMEM and was best described by a two-compartment model. Conclusions. Cefuroxime penetrates osteomyelitis affected bone tissue within the hour proving the usefulness of cefuroxime as prophylaxis of orthopaedic surgery and as treatment option for PJI. However, PK modelling and further simulations need to prove whether repeated cefuroxime dosing in this population is required to reach minimal inhibitory concentrations in target tissue


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_19 | Pages 22 - 22
22 Nov 2024
Söderquist B Möller M Salihovic S
Full Access

Aim. Dalbavancin is a lipoglycopeptide with a broad antimicrobial spectrum against Gram-positive bacteria and effect against microorganisms in biofilm in vitro. Its pharmacokinetic properties, with an exceptionally long half-life of approximately 300 hours, allow for simplified administration that may be of value in the long-term treatment of bone and joint infections, such as prosthetic joint infections (PJIs). Several case reports and case series with “off-lable” treatment with dalbavancin of PJIs exist, but the optimal dosing regimen remains to be defined. Therapeutic drug monitoring (TDM) is recommended for treatment with >2 doses of dalbavancin. In the absence of TDM, the Swedish national guidelines for bone and joint infections (2023, . www.infektion.net. ) recommends a loading dose of dalbavancin 1,500 mg on day 1 and 1,500 mg on days 8 – 14, after which from day 28 1,000 mg is given biweekly or 500 mg every week. The aim of the present study was to determine trough levels of dalbavancin in patients with long-term treatment of PJIs according to the national guidelines. Method. Twelve patients with PJI were treated with at least 6 doses of dalbavancin, of which the first two doses were 1500 mg and the following doses were 1000 every second week, and prospectively sampled biweekly for determination of serum concentrations (trough levels) of dalbavancin which was measured by liquid chromatography coupled to electrospray tandem mass spectrometry (LC-MS/MS). The renal function was also examined. Results. The median serum concentration 14 days after the first dose of dalbavancin 1500 mg was 36.3 mg/L (range 6.6 – 62.4 mg/L). The median value 14 days after the second dose of 1500 mg (day 27 – 28) was 48.2 mg/L (range 12.2 – 77.3 mg/L). The trough value after the last dose of a total of 6 – 7 doses was as median 43.1 mg/L (range 26.2 – 97.5 mg/L). Three patients showed a tendency towards successive accumulation of dalbavancin during treatment. None of the patients, including those three with increasing through levels during treatment, showed any significant alteration in creatinine nor glomerular filtration rate. Conclusions. TDM during long-term treatment with dalbavancin is recommended to avoid the risk of accumulation and unnecessarily high trough values. With TDM, the dosing interval can be extended in several cases. In addition, with the support of TDM, subtherapeutic serum concentrations, with the risk of developing resistance, can be avoided


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_10 | Pages 59 - 59
1 Oct 2022
Santos INM Kurihara MNL Santos FF Valiatti TB d. Silva JTP Pignatari ACC Salles M
Full Access

Aim. S. aureus and S. epidermidis remain the leading biofilm-forming agents causing orthopedic implant-associated infections (OIAI), but other coagulase-negative Staphylococcus (CoNS) with clinical importance is emerging. Besides, few studies have assessed specific genomic traits associated with patient outcome. This is a preliminary descriptive study of phenotypic and genomic features identified in clinical isolates of S. aureus and CoNS isolates recovered from OIAIs patients that progressed to treatment failure. Methods. Ten isolates were identified by matrix-time-of-flight laser-assisted desorption mass spectrometry (MALDI-TOF-MS) and tested for antibiotic susceptibility and biofilm formation. Genotypic characteristics, including, MLST (Multi Locus Sequence Typing), SCCmec typing, virulence and resistance genes were assessed by whole-genome sequencing (WGS) that was performed on an Illumina HiSeq 2500 platform. Bioinformatics analyzes were performed using CGE, PATRIC, VFDB, CARD RGI, SnapGene, BLAST, and PubMLST. S. aureus (215, 260 and 371) isolates belonged to CC5 (ST5 and ST105, spa type t002) and carried SCCmec type I (1B), II (2A) and V(5C2), respectively. Results. They carried multiple resistance genes, with all resistant to methicillin (MRSA), and harboured mecA, blaZ. S. aureus 215 and 371 carried ermA gene and multiple genes for aminoglycosides resistance including aph(3’)-III, ant(9)-Ia, and ant(4)-Ib, and for quinolones. S. aureus 260 also carried resistance genes for tetracycline, quinolones and trimethoprim (dfrC). All MRSA were strong biofilm producers harboring the complete icaADBC and icaR operon, and also carried multiple adhesion and toxin-related virulence genes. Seven CoNS isolates comprising five species (S. epidermidis, S. haemolyticus, S. sciuri, S. capitis and S. lugdunensis) were analyzed, with mecA gene detection in five isolates. S. haemolitycus (95) and S. lugdunensis were unable to form biofilm and did not harbor the complete icaADBCR operon. S. epidermidis (216, 403) and S. haemolyticus (53,95) isolates belonged to the ST2/CC2, ST183, ST9 and ST3, respectively. High variability of adhesion genes was detected, with atl, ebp, icaADBC operon and IS256 being the most common. Conclusions. In conclusion, this study provides insights into the phenotypic and genomic analysis of Staphylococci allowing elucidation of MRSA and CoNS specific features that are associated with treatment failure in OIAIs, including genes associated with biofilm production, and resistance to β-lactam and aminoglycosides


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_10 | Pages 81 - 81
1 Oct 2022
Hvistendahl MA Bue M Hanberg P Kaspersen AE Schmedes AV Stilling M Høy K
Full Access

Background. Surgical site infection following spine surgery is associated with increased morbidity, mortality and increased cost for the health care system. The reported pooled incidence is 3%. Perioperative antibiotic prophylaxis is a key factor in lowering the risk of acquiring an infection. Previous studies have assessed perioperative cefuroxime concentrations in the anterior column of the cervical spine with an anterior surgical approach. However, the majority of surgeries are performed in the posterior column and often involve the lumbar spine. Accordingly, the objective was to compare the perioperative tissue concentrations of cefuroxime in the anterior and posterior column of the same lumbar vertebra using microdialysis in an experimental porcine model. Method. The lumbar vertebral column was exposed in 8 female pigs. Microdialysis catheters were placed for sampling in the anterior column (vertebral body) and posterior column (posterior arch) within the same vertebra (L5). Cefuroxime (1.5 g) was administered intravenously over 10 min. Microdialysates and plasma samples were continuously obtained over 8 hours. Cefuroxime concentrations were quantified by Ultra High Performance Liquid Chromatography Tandem Mass Spectrometry. Microdialysis is a catheter-based pharmacokinetic tool, that allows dynamic sampling of unbound and pharmacologic active fraction of drugs e.g., cefuroxime. The primary endpoint was the time with cefuroxime above the clinical breakpoint minimal inhibitory concentration (T>MIC) for Staphylococcus aureus of 4 µg/mL as this has been suggested as the best predictor of efficacy for cefuroxime. The secondary endpoint was tissue penetration (AUC. tissue. /AUC. plasma. ). Results. Mean T>MIC 4 µg/mL (95% confidence interval) was 123 min (105–141) in plasma, 97 min (79–115) in the anterior column and 93 min (75–111) in the posterior column. Tissue penetration (95% confidence interval) was incomplete for both the anterior column 0.48 (0.40–0.56) and posterior column 0.40 (0.33–0.48). Conclusions. Open lumbar spine surgery often involves extensive soft tissue dissection, stripping and retraction of the paraspinal muscles which may impair the local blood flow exposing the lumbar vertebra to postoperative infections. A single intravenous administration of 1.5 g cefuroxime resulted in comparable T>MIC between the anterior and posterior column of the lumbar spine. Mean cefuroxime concentrations decreased below the clinical breakpoint MIC for S. aureus of 4 µg/mL after 123 min (plasma), 97 min (anterior column) and 93 min (posterior column). This is shorter than the duration of most lumbar spine surgeries, and therefore alternative dosing regimens should be considered in posterior open lumbar spine surgeries lasting more than 1.5 hours


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_15 | Pages 60 - 60
1 Dec 2021
Restrepo S Groff H Goswami K Parvizi J
Full Access

Aim. It is traditionally stated that around 80% of all periprosthetic joint infections (PJI) are caused by well-known gram-positive organisms such as Staphylococcus aureus. With the advances in diagnostic modalities and improved abilities to isolate infective organisms, we believe the organism profile causing PJI has changed over time and includes numerous other organisms that were either not recognized as pathogens and/or considered as contaminants. Method. We retrospectively reviewed the medical records of 1,363 patients with confirmed PJI (559 THA and 804 TKA) who received treatment at our institution between 2000 and 2019. Pertinent data related to demographics, microbiological findings, and outcome of treatment were collected. Organisms were differentiated using culture or confirmed by Matrix-Assisted Laser Desorption Ionization-time of flight (MALDI-tof) mass spectrometry. Statistical analysis included logistic regressions. Results. There was a total of 26 different species of organisms that resulted in PJI in our cohort. The rate of PJI caused by slow growing organisms, that are catalase negative, such as Streptococcal viridans (OR 1.244; 95% CI 1.036–1.494), Streptococcus agalactiae (OR 1.513; 95% CI 1.207–1.898), and Staphylococcus epidermidis (OR 1.321; 95% CI 1.191–1.466) has been increasing over time. In contrast, the incidence of PJI caused by coagulase-negative Staphylococcus (OR 0.954; 95% CI 0.927–0.981); resistant species (OR 0.962, 95% CI 0.931–0.995), and Gram-positive species (OR 0.94, 95% CI 0.914–0.966) decreased over time. Notably, there was a higher prevalence of Streptococcal PJI (OR 0.551, 95% CI 0.374–0.812) and culture-negative PJI (OR 0.652, 95% CI 0.478–0.890) seen in knees versus hips. The rate of culture negative PJI also increased from 20% in 2000 to 28% in 2019. In the latter years of the study, very unusual list of organisms causing PJI were also identified. Conclusions. This study reveals that the list of organisms causing PJI has expanded in recent years. The study also finds that some the slow growing organisms that were previously believed to be “contaminants” can and do cause PJI in a considerable number of patients. The number of culture negative cases of PJI has also increased at our institution over the years. There are a number of explanations for the latter finding, perhaps with the most important reason being liberal use of antibiotics that interferes with isolation of the infective organism


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_8 | Pages 52 - 52
1 Aug 2020
Abuhantash M Rauch F Rak J Hamdy RC Al-Jallad H
Full Access

Osteogenesis Imperfecta (OI) is a heritable bone disorder characterized by bone fragility and often caused by mutations in the Type I collagen-encoding genes COL1A1 and COL1A2. The pathophysiology of OI, particularly at the cellular level, is still not well understood. This contributes to the lack of a cure for this disorder as well as an effective preventive or management options of its complications. In the bone environment, mesenchymal stem cells (MSCs) and osteoblasts (Ob) exert their function, at least partially, through the secretion of extracellular vesicles (EV). EV is a heterogeneous group of nanosized membrane-enclosed vesicles that carry/transfer a cargo of proteins, lipid and nucleic acids from the secreting cell to its target cells. Our objective is to characterize EVs secreted by human control (HC)- and OI-MSCs and their derived Obs, with focus on their protein content. We hypothesize that there will be differences in the protein content of EVs secreted by OI-Obs compared to HC-Ob, which may indicate a deviation from healthy Ob behavior and, thus, a role in OI pathophysiology. MSCs were harvested from the adipose tissue of four COL1A1-OI and two HC patients. They were proliferated in an EV-depleted media, then induced to differentiate to extracellular matrix (ECM)-producing osteoblasts, which then gets mineralized. EVs secreted by MSCs (MSC-EV) and Obs (Ob-EV) were then purified and concentrated. Using liquid chromatography- tandem mass spectrometry, proteomic analysis of the EV groups was done. A total of 384 unique proteins were identified in all EVs, 373 were found in Vesiclepedia indicating a good enrichment of our samples with EV proteins. 67 proteins of the total 384 were exclusively or significantly upregulated (p-value < 0 .05) in OI-Ob-EV and 28 proteins in the HC-Ob-EVs, relative to each other. These two groups of differentially expressed proteins were compared by Gene Ontology (GO) analysis of their cellular compartment, molecular functions and biological processes. We observed that there were differences in the cellular origin of EV-proteins, which may indicate heterogeneity of the isolated EVs. Molecular function and biological process analyses of the HC-Ob-EV proteins showed, as expected, predominantly calcium-related activities such as extracellular matrix (ECM) mineralization. OI-Ob-EV proteins were still predominantly exhibiting ECM organization and formation functions. Annexins A1,2,4,5 and 6 were differentially and significantly upregulated by the HC-Ob-EVs. Fibronectin (FN), Fibulin-1 and −2, and Laminins (α4 & γ1), which are amongst the early non-collagenous proteins to form the ECM, were differentially and significantly upregulated in the OI-Ob-EVs. We concluded that the persistent expression of Fibronectin (FN), Fibulin-1 and −2, and Laminins in OI-Ob-EVs might indicate the presence of an immature ECM that the OI-Obs are trying to organize. ECM mineralization is largely dependent on the presence of an organized mature ECM, and this being compromised in OI bone environment, may be a contributor to the bone fragility seen in these patients. Annexins, which are calcium-binders that are vital for ECM mineralization, were significantly downregulated in the OI-Ob-EVs and this may be a further contributor to ECM mineralization impairment and bone fragility


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_22 | Pages 67 - 67
1 Dec 2017
Scheer V Jungeström MB Lerm M Serrander L Kalén A
Full Access

Aim. The purpose of this study was to compare the presence of P.acnes on the skin after topical pre-operative application with benzoyl peroxide (BPO) to chlorhexidine soap (CHS) and whether this also affected skin recolonization after surgical preparation and draping. Method. Forty volunteers – twenty-four men and sixteen women were randomized to pre-operative topical treatment at home with either CHS or BPO in the area of a delto-pectoral approach of their left shoulder. The right served as a control. Five skin swabs were taken in a standardized manner on different occasions: before and after topical treatment, after surgical skin preparation and sterile draping and 120 minutes after draping. A fifth sample was taken on the contralateral untreated side as a control when the patient was draped. The draping took place in an operating room with laminar air flow and skin preparation was performed for 2 minutes with 0.5% chlorhexidine solution in 70% ethanol according to the recommendations of the Swedish National Board of Health and Welfare. Bacterial colonies were then analyzed on agar plates by colony forming units (CFU) and surface characteristics. P.acnes were identified with matrix-assisted laser desorption/ionization time-of-flight (MALDI-ToF) mass spectrometry. Results. Topical treatment with BPO significantly reduced the presence of P.acnes as CFU on the skin after surgical preparation. P.acnes was found in 1/20 subjects of the BPO group, and 7/20 in the CHS-group (p<0.044). The results remained after two hours (p<0.048). Topical treatment with BPO before surgical skin preparation significantly decreased the presence of CFU (p-value 0.035). Conclusions. Topical preparation with BPO before shoulder surgery may be effective in reducing P.acnes on the skin and prevent recolonization


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_23 | Pages 66 - 66
1 Dec 2016
Samara E Moriarty F Decosterd LA Richards G Gautier E Wahl P
Full Access

Aim. Thermal stability is a key property determining the suitability of an antibiotic agent for local application. Long-term data describing thermal stability without interference from carrier materials are scarce. Method. In this study, a total of 38 common antibiotic agents have been maintained at 37 °C in saline solution, and degradation and antibacterial activity assessed over 6 weeks. The impact of an initial supplementary heat exposure mimicking exothermically-curing bone cement has also been tested. Antibiotic degradation was assessed by chromatography coupled to mass spectrometry or immunoassays, as appropriate. Antibacterial activity was determined by Kirby-Bauer disk diffusion assay. Results. The heat exposure mimicking curing bone cement had minimal effect on stability for most antibiotics, except for gentamicin, which experienced approximately 25% degradation as measured by immunoassay. Beta-lactam antibiotics were found to degrade quite rapidly at 37°C regardless of whether there was an initial heat exposure or not. However some of them maintained relevant concentrations and activity for 2–3 weeks, particularly aztreonam. Excellent long-term stability was observed for aminoglycosides, glycopeptides, tetracyclines and quinolones under both conditions. Conclusions. This study provides a valuable dataset for orthopaedic surgeons considering local application of antibiotics. For example, tobramycin would be more suitable for application with bone cement than gentamicin, as it was found to be resistant to heat exposure mimicking curing bone cement


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_22 | Pages 77 - 77
1 Dec 2017
El Sayed F Roux A Rabès J Mazancourt P Bauer T Gaillard J Rottman M
Full Access

Aim. Propionibacterium acnes is a skin commensal colonizing the deeper structures of the pilous bulb. It is responsible for 5–10% of lower limb prosthetic joint infections (PJI) but accounts for as many as 50% of shoulder arthroplasty infections. P. acnes PJIs characteristically feature limited systemic inflammation, limited polymorphonuclear infiltration and clinical signs compatible with aseptic loosening. All current microbiological definitions of PJI require two or more identical commensal isolates to be recovered from the same procedure to diagnose PJI to increase specificity and rule out contamination. Whereas the antimicrobial susceptibility patterns of coagulase negative staphylococci are highly polymorphic and commonly allow the ready distinction of unrelated strains, P. acnes shows a highly stereotypical susceptibility profile and it is impossible to phenotypically assess the clonal relationship of isolates. In order to determine the clonal relationship of multiple P. acnes isolates recovered from arthroplasty revisions, we analyzed by multi-locus sequence typing (MLST) P. acnes isolates grown from PJI in a reference center for bone and joint infection. Method. We retrospectively selected all cases of microbiologically documented monomicrobial PJI caused by P. acnes diagnosed in our center from January 2009 to January 2014. Microorganisms were identified by MALDI-TOF mass spectrometry (Bruker Daltonics). All corresponding P.acnes isolates biobanked in cryovials frozen at −80°C were subcultured on anaerobic blood agar, DNA extracted by freeze-thawing and bead-milling, and typed according to the 9 gene MLST scheme proposed by Lomholt HB. and al. Results. Over the 5-year period, 39 cases of PJI positive with P. acnes were diagnosed in our center. Three to ten intraoperative samples were sent for microbiological analysis per surgery. Overall, 113 P. acnes isolates were grown from 210 samples. On average, four samples were positive out of six. In 34/39 cases, all isolates belonged to the same ST. In 5 cases, multiples STs were found among the P.acnes isolates. In 3/39 cases (7.7%), a single ST was found to be microbiologically significant, with a single isolate of the alternate ST. In 2/39 cases (5.1%), we found that each isolate belonged to a different ST. Conclusions. P. acnes PJI were found to be polyclonal by MLST in 12.8% of cases in our experience, with more than 5% of cases not fulfilling the requirements for microbiological significance. The criteria for microbiological significance do not necessarily apply to commensal agents with no antimicrobial susceptibility pattern variation such as P. acnes


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_6 | Pages 63 - 63
1 Apr 2018
Shon W Han S Lee D Kim H
Full Access

Background. Recent clinical studies have suggested that systemic metal ion levels are significantly elevated at midterm follow-up after ceramic-on-metal (COM) bearing. However, it is not clear whether there is a correlation between patient- and surgical-related factors including the lifestyle and elevated levels of serum metal ions following COM total hip arthroplsty (THA). Material and Methods. Two hundred and one patients (234 hips) including 121 COM patients (140 hips) and 80 non-COM patients (94 hips) were enrolled in accordance with the inclusion criteria. The patients were divided into three groups based on the type of surgical bearings used. The Harris Hip Score (HHS), University of California, Los Angeles (UCLA) activity scale score, and Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) score were measured, and radiographs were obtained for the analysis. Serum metal ion levels of cobalt and chromium were measured using a high-resolution inductively coupled plasma mass spectrometry. Patient- and surgical-related factors were analyzed to determine which group of patients is at a high risk of metal ion-related problems. Results. Significantly higher serum levels of Co and Cr were detected in the serum of the COM THA group (Co: 1.86±4.0 µg/L, range: 0.30 to 34.20 µg/L; Cr: 1.81±2.87 µg/L, range: 0.10 to 27.80 µg/L) than in the serum of the non-COM THA group (Co: 0.27±0.14 µg/L, range: 0.15 to 0.90 µg/L; Cr: 0.19±0.25 µg/L, range; 0.10 to 2.30 µg/L) (p<0.001). The HHS in the COM group was significantly better than that in the non-COM group (p=0.013). The total ROM of the THAs was significantly greater in the 36-mm COM THA group (272.7°, range: 200°–345°) than in the non-COM group (248.5°, range: 135°–300°) (p<0.001). No radiolucency, osteolysis, or loosening was found during the follow-up radiographic examination. The serum Co levels of patients who achieved the squatting position were significantly higher than those of patients who could not squat (Co: p=0.033; Cr: p=0.074). The serum Co and Cr levels of patients who achieved the kneeling position were significantly higher than those of patients who could not kneel (Co: p=0.049; Cr: p=0.031). There was no significant difference between the two groups in the cross-legged sitting position. The metal ion levels of the COM THA group correlated with the total ROM (Co: p=0.0293; Cr: p=0.0399), and those of the patients who were capable of squatting and kneeling were significantly higher than those of the patients who were unable (p<0.05). However, age, BMI, acetabular cup position and patient activity did not show significant correlations with the serum metal ion levels. Conclusions. Patients who underwent a 36-mm COM THA had good clinical outcomes with an excellent hip function at the short and midterm follow-up intervals. However, high levels of metal ions were detected in the serum of COM THA patients. We found that COM THA patients who were capable of greater ROMs, squatting, and kneeling are at risk of metal ion-related problems


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_20 | Pages 56 - 56
1 Nov 2016
Nadeau R Howard J Ralley F Somerville L Naudie D
Full Access

Tranexamic acid (TEA), an antifibrinolytic agent, is routinely used for reduction of blood loss in total hip arthroplasty (THA). However, use of intravenous (IV) TEA has been questioned due to safety concerns and a lack of biochemical data in the arthroplasty literature. Tranexamic acid given topically as a periarticular solution is a promising alternative route of administration. The purpose of this study is to identify differences in systemic absorption for intravenous and topical TEA administered during primary THA. In a blinded randomised controlled trial of patients undergoing primary cementless total hip arthroplasty, 29 participants received a weight-based bolus infusion of intravenous TEA (20 mg/kg) 10 minutes prior to skin incision. Conversely, 15 participants received a 1.5 g bolus dose of TEA administered topically into the periarticular region of the operative hip at the time of arthrotomy closure. A blood sample was drawn one hour post-administration for measurement of serum TEA concentration (µg/mL) by tandem mass spectrometry. In addition to comparing mean concentration levels for both treatment arms, each sample concentration was referenced to a pre-determined TEA concentration threshold of 10 µg/mL, a value known to represent 80% tissue plasminogen activator (tPA) inhibition in vivo. Those participants receiving topical TEA had four-fold lower TEA levels at one hour postoperatively (mean 12.44 ± 17.59 versus 52.54 ± 23.94 µg/mL, p<0.05). These results demonstrate significantly lower circulating TEA at one hour after topical administration. Intravenous TEA must travel through the intravascular compartment in order to reach the operative hip. Topical administration of TEA targets bleeding tissues within the surgical field without necessitating parenteral administration. This results in less inhibition of tPA away from the operative site, potentially decreasing the risk of developing a pro-thrombotic state postoperatively. Correlating these results with outcomes from clinical efficacy trials comparing intravenous and topical TEA use in THA will further clarify optimal dosing strategies


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_20 | Pages 46 - 46
1 Nov 2016
Gandhi R Sharma A Gilbert P Bakooshli M Gomez A Kapoor M Viswanathan S
Full Access

Osteoarthritis (OA) is the most common form of arthritis worldwide. It is a major cause of disability in the adult population with its prevalence expected to increase dramatically over the next 20 years. Although current therapies can alleviate symptoms and improve function in early course of the disease, OA inevitably progresses to end-stage disease requiring total joint arthroplasty. Mesenchymal stromal cells (MSCs) have emerged as a candidate cell type with great potential for intra-articular (IA) repair therapy. However, there is still a considerable lack of knowledge concerning their behaviour, biology and therapeutic effects. To start addressing this, we explored the secretory profile of bone marrow derived MSCs in early and end-stage knee OA synovial fluid (SF). Subjects were recruited and categorised into early [Kellgren-Lawrence (KL) grade I and II, n=12] and end-stage (KL grade III and IV, n=11) knee OA groups. The SF proteome of early and end-stage OA was tested before and three days after the addition of bone marrow MSCs (16.5×10^3, single donor) using multiplex ELISA (64 cytokines) and mass spectrometry (302 proteins detected). Non parametric Wilcoxon-signed rank test for paired samples was used to compare the levels of proteins before and after addition of MSCs in early and end-stage knee OA SF. Significant differences were determined after multiple comparisons correction (FDR) with a p<0.05. Gender distribution and BMI were not statistically different between the two cohorts (p>0.05). However, patients in early knee OA cohort were significantly younger (44.7 years, SD=7.1) than patients in the end-stage cohort (58.6 years, SD=4.4; p<0.05). In both early and end-stage knee OA, MSCs increased the levels of VEGF-A (by 320.24 pg/mL), IL-6 (by 826.78 pg/mL) and IL-8 (by 128.85 pg/mL), factors involved in angiogenesis; CXCL1/2/3 (by 103.35 pg/mL), CCL2 (by 1187.27 pg/mL), CCL3 (by 15.82 pg/mL) and CCL7 (by 10.43 pg/mL), growth factors and chemokines. However, CXCL5 (by 48.61 pg/mL) levels increased only in early knee OA, whereas PDGF-AA (by 15.36 pg/mL) and CXCL12 (by 497.19 pg/mL) levels increased only in end-stage knee OA. This study demonstrates that bone marrow derived MSCs secrete angiogenic and chemotactic factors both in early and end-stage knee OA. More importantly, MSCs show a differential reaction between early and end-stage OA. Functional assays are required to further understand on how the therapeutic effect of MSCs is modulated when exposed to OA SF


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_9 | Pages 78 - 78
1 May 2016
Narayan V
Full Access

The ATTUNE™ Knee System (DePuy Synthes) comprises of a tibial insert that is made from AOX™, an antioxidant-stabilized polyethylene. The antioxidant used in AOX is pentaerythritol tetrakis [3-(3, 5-di-tertiary butyl-4-hydroxyphenyl)] propionate (PBHP). A biological risk assessment of the degradation products arising from PBHP has been performed. This assessment focuses on the requirements of ISO 10993–1:2009, ISO 14971:2007, and the Medical Device Directive 93/42/EEC. Because the orthopedic implant is a permanent implant, consideration has been given to all relevant endpoints defined by ISO 10993–1 Biological evaluation of medical devices – Part 1: Evaluation and testing within a risk management process. Comprehensive biocompatibility testing including long-term (26 weeks) subcutaneous implantation has been conducted which confirms the biosafety of the polyethylene compound[1]. In addition to the biological safety testing completed, the overall safety and the associated toxicological risk of exposure to degradation products of PBHP has been given due consideration. The guidelines for the Threshold for Toxicological Concern (TTC) provided by The Product Quality Research Institute (PQRI) Leachables and Extractables Working Group were used in the assessment[2]. This working group is a collaboration of chemists and toxicologists from the U.S. Food and Drug Administration (FDA), industry, and academia. The TTC principle allows safety assessment in the absence of substance-specific hazard data, based on very low levels of exposure to that substance. A Margin of Safety (MOS) is calculated as the ratio of the threshold safety value to the actual exposure quantities determined and used in the assessment. A MOS value greater than 1 is typically judged by risk assessors and regulatory bodies to be unlikely to cause harm and the risk may be considered low. The identity of the degradation products as well as the corresponding 30-day leachable quantities from a water:acetone extraction media has been previously reported [3] and provided here (Table 1). The amount of leachables determined from Table 1 for all products were well below the TTC of 150 ng/device and hence no toxicological risks were identified for these compounds. In order to further examine the toxicological risk assessment, aggressive extraction using Dynamic Head Space (DHS) extraction was done and analytical testing was performed on the degradation products of PBHP using gas chromatography/mass spectrometry (GC /MS). These estimated quantities along with literature information from biological safety studies of the chemicals that were identified from the quantitative GC/MS analysis of degradation products of PBHP were used in the review and toxicological assessment per the methodology described in ISO 14971 and ISO 10993–18. The extraction and analysis confirmed the same sixteen compounds previously identified. The quantities and the calculated margins of safety are summarized (Table 2). In conclusion, upon review of actual test results of PBHP degradation products (Table 1), there is little probability that these organic degradation products would cause a systemic reaction and not be safe. Thus, the potential biological hazards identified in ISO 10993–1:2009 due to the quantified leachables have been verified to be minimal with a high Margin of Safety relative to the Threshold of Toxicological Concern


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 155 - 155
1 Mar 2013
Ziaee H Daniel J Pradhan C McMinn D
Full Access

Introduction. Modern metal-on-metal bearing resurfacings have been in use for nearly two decades. Local and systemic metal ion exposure continues to cause concern. We could not find a prospective metal ion study in such patients with a 10-year follow-up. This is the first ten year prospective study of metal ion levels in blood and their release in urine following hybrid fixed metal-on-metal surface arthroplasty. Methods. Twenty six patients were included in an ongoing longitudinal metal ion study of patients with unilateral metal-on-metal hip resurfacings. Three of them were excluded due to subsequent contralateral resurfacing and one has relocated abroad. Cobalt and chromium levels were assessed in 12 hour urine collections before and periodically after operation (5 days to 10 years) using high resolution plasma mass spectrometry. Mean age at operation was 53 years and mean BMI 27.9. Results. Hip function questionnaires at the 10-year review showed that the patients have well-functioning pain-free resurfacings (mean Oxford hip score 14.3). Metal ion results show median cobalt and chromium release at 10 years were 8.3 μg/24 hr and 4.35 μg/24 hr respectively. A statistically significant early peak 6 months to 1 year after operation is followed by a steady decrease over the following seven years although the reductions are not statistically significant. Discussion and Conclusion. Elevated systemic metal ion exposure continues to cause concern in patients treated with metal-metal arthroplasties. Our results show that metal release in these bearings shows a reducing trend after an initial peak. The unknown significance of persistent metal ion elevation underlines the need for continued long-term monitoring


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_II | Pages 83 - 83
1 Feb 2012
Hart A Hester T Goodship A Powell J Pele L Fersht N Skinner J
Full Access

It is thought that metal ions from metal on metal bearing hip replacements cause DNA damage and immune dysfunction in the form of T cell mediated hypersensitivity. To explore the hypothesis that there is a relationship between metal ion levels and DNA damage and immune dysfunction in matched patient groups of hip resurfacings and standard hip replacements reflected in the levels of lymphocyte subtypes (CD3+ T cells, CD4+ T helper cells, CD8 +T cytotoxic/suppressor cells, CD16 +Natural Killer and CD19+ B cells) in peripheral blood samples, we analysed peripheral blood samples from 68 patients: 34 in the hip resurfacing group and 34 in the standard hip arthroplasty group. Samples were analysed for counts of each sub-group of lymphocyte and cytokine production. Whole blood cobalt and chromium ion levels were measured using inductively-coupled mass spectrometry. All hip components were well fixed. Cobalt and chromium levels were significantly elevated in the resurfacing group compared to the hybrid group (p<0.001). There was a statistically significant decrease in the resurfacing group's level of CD8+ cells (T cytotoxic/suppressor) (p=0.010). No other subgroup of lymphocytes was significantly affected. Gamma interferon levels post antigen challenge were severely depressed in the hip resurfacing group. A threshold level of blood cobalt and chromium ions for depression of CD8+ T cells was observed. Hip resurfacing patients have levels above this threshold whilst standard hip replacements fall below it. The patients all had normal levels of CD16 +Natural Killer and CD19+ B cells suggesting that this is not a bone marrow toxic effect. Cytokine analysis confirmed that some aspects of T cell function in hip resurfacing patients are severely depressed


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_IV | Pages 28 - 28
1 Mar 2012
Ziaee H Daniel J Pradhan C McMinn D
Full Access

Introduction. Large diameter metal-metal total hip replacements (MM THRs) offer the advantages of low wear and low dislocation risk and are being increasingly used in high-demand patients whose bone quality rules out the possibility of a hip resurfacing. However suggests that large headed MM devices may result in greater systemic metal exposure compared to small diameter bearings. This raises fresh concerns of elevated systemic metal levels. Methods. Whole blood concentrations and daily output of cobalt and chromium in 28 patients with unilateral large diameter MM THRs (42 to 54mm bearings) were studied at 1-year follow-up. These were compared with the whole blood levels in 20 patients at 1 year and daily output of metal ions in 28 patients with 28mm MM THRs at 1 to 3 years. Both bearings are made of high carbon cobalt-chrome alloy, the larger bearing is as-cast alloy and the smaller is wrought alloy. High resolution inductively coupled plasma mass spectrometry was used for analysis. None of the patients had other metal devices or compromised renal function. They had either a cemented polished tapered stainless steel stem or a cementless porous ingrowth titanium alloy stem. Results. Mean whole blood levels of cobalt at 1 year were 1.7 and 2.3 μg/l and chromium were 1.7 and 1.4 μg/l in the small and large diameter THR cohorts respectively. The mean differences were not statistically significant for either metal. The mean daily output of cobalt and chromium in the early years in the small and large diameter THRs, which were 11.6 and 12.3 μg/24 hrs; and 3.7 and 4.1 μg/24 hrs respectively, were also without a statistically significant difference. Discussion. This study shows that whole blood concentrations of cobalt and chromium; and daily output of metal ions in urine are similar in small and large diameter bearing MM THRs


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 201 - 201
1 Dec 2013
Watanabe H Hachiya Y Murata H Muramatsu K Taniguchi S Kondo M Tanaka K
Full Access

Introduction. Higher concentrations of metal ion levels after Metal-on-metal (MoM) THA are a cause for concern. Elevated cobalt (Co) and chromium (Cr) ion levels in the blood indicate metal wear, and may predict secondary soft-tissue damage (adverse reaction to metal debris; ARMD). Although, it is well known that concentrations of metal ion levels are elevated in the short term after MoM, the long-term consequences in ion concentration and risk factors for increased ion levels are not clarified. We sequentially investigated the postoperative Co and Cr ion levels after MoM THA and the relationship between the metal ion levels and several risk factors. Materials and Methods. We reviewed the data on one hundred and eighty six patients of two hundred ninety one MoM THA cases. The one hundred eighty six patients were measured at least three times after a MoM THA surgery over a five year (2005–2010) period in our institution. Serum cobalt and chromium levels were measured by inductor coupled plasma – mass spectrometry at several times in follow-up period, (measured at the preoperative period, the third month, the sixth month, the first year, the second year, and the fourth year after MoM THA). Furthermore, we investigated the correlation between the metal ion levels and various factors which might influence the release of metal ions, such as Body mass index (BMI), renal function, femoral head size, unilateral or bilateral THA, the cup position, and postoperative activity. The renal function was evaluated by measuring estimated glomerular filtration ratio (GFR) at preoperative examination. A postoperative activity was assessed with a pedometer measurement counting number of steps a day. A cup position was evaluated by lateral inclination measured by X-ray or computed tomography. Results. Average serum Co and Cr concentrations in preoperative period were 0.69 and 0.05 mg/ ml, respectively. Postoperative serum Co and Cr ion levels were significantly increased compared with preoperative value throughout the postoperative period. There was no significant correlation with regards to BMI, renal function, femoral head size tothe metal ion level measurement. In bilateral THA cases, Co and Cr ion concentrations were significantly increased compared with unilateral THA cases. In addition, in cases that its cup inclination was more than 50 degrees, Co and Cr ion concentration were significantly increased compared with cases less than 50 degrees in the first year after surgery. There was a trend for higher metal ion levels in the group of patients who walked more than 7000 steps a day, but this did not reach statistical significance. Conclusion. Metal ion concentrations of almost patients were increased after MoM THA surgery. Side effects related to elevation of serum Co or Cr concentration were currently not identified and overall clinical results were good. However, Longer follow-up would be necessary if the patients have overlapping risk factors, because those patients may experience elevation of the level in postoperative late stage