Aim. The current antibiotic treatment of periprosthetic joint infection (PJI) is optimized by measuring concentrations in plasma. However, it remains unclear whether effective concentrations of the antibiotics are reached at the site of PJI. Nonetheless, adequate target site concentrations are important to achieve effective eradication of the micro-organism. In order to determine the efficacy of cefuroxime and flucloxacillin in synovial fluid, synovial tissue and bone tissue in relation to the minimal inhibitory concentration (MIC) of the pathogen causing the PJI, we perform a pharmacokinetic/pharmacodynamic (PK/PD) study. Therefore, we aimed to develop validated analytical methods for analysis of cefuroxime and flucloxacillin in synovial fluid, synovial tissue and bone tissue. Method. Blank samples of synovial fluid, synovial tissue and bone tissue were obtained by orthopedic surgeons during surgery. For validation the samples of each matrix were spiked with both cefuroxime and flucloxacillin. Synovial tissue and bone tissue was pulverized with a mikro-dismembrator. Samples were kept frozen at −20°C until analysis. After a sample preparation quantification of cefuroxime and flucloxacillin in each matrix was performed on the ultra-performance convergence chromatography-tandem
Summary Statement. In this study, we observed that MR16-1, an interleukin-6 inhibitor, recovered phosphatidylcholine containing docosahexaenoic acid at the injury site after spinal cord injury in mice model by using imaging
Aims. The metabolic variations between the cartilage of osteoarthritis (OA) and Kashin-Beck disease (KBD) remain largely unknown. Our study aimed to address this by conducting a comparative analysis of the metabolic profiles present in the cartilage of KBD and OA. Methods. Cartilage samples from patients with KBD (n = 10) and patients with OA (n = 10) were collected during total knee arthroplasty surgery. An untargeted metabolomics approach using liquid chromatography coupled with
Aims. The diagnosis of periprosthetic joint infection (PJI) continues to present a significant clinical challenge. New biomarkers have been proposed to support clinical decision-making; among them, synovial fluid alpha-defensin has gained interest. Current research methodology suggests reference methods are needed to establish solid evidence for use of the test. This prospective study aims to evaluate the diagnostic accuracy of high-performance liquid chromatography coupled with the
Purpose Coagulase negative staphylococci (CNS) have been one of the major pathogens responsible for prosthetic joint infections, and are showing increasing multiple-antibiotics resistance. Intact cell
Aims. The aim of this study was to determine the fracture haematoma (fxH) proteome after multiple trauma using label-free proteomics, comparing two different fracture treatment strategies. Methods. A porcine multiple trauma model was used in which two fracture treatment strategies were compared: early total care (ETC) and damage control orthopaedics (DCO). fxH was harvested and analyzed using liquid chromatography-tandem
Aims. There is a considerable challenge in treating bone infections and orthopaedic device-associated infection (ODAI), partly due to impaired penetration of systemically administrated antibiotics at the site of infection. This may be circumvented by local drug administration. Knowledge of the release kinetics from any carrier material is essential for proper application. Ceftriaxone shows a particular constant release from calcium sulphate (CaSO. 4. ) in vitro, and is particularly effective against streptococci and a large portion of Gram-negative bacteria. We present the clinical release kinetics of ceftriaxone-loaded CaSO. 4. applied locally to treat ODAI. Methods. A total of 30 operations with ceftriaxone-loaded CaSO. 4. had been performed in 28 patients. Ceftriaxone was applied as a single local antibiotic in 21 operations and combined with vancomycin in eight operations, and in an additional operation with vancomycin and amphotericin B. Sampling of wound fluid was performed from drains or aspirations. Ceftriaxone concentrations were measured by liquid chromatography with tandem
Stratification is required to ensure that only those patients likely to benefit, receive Autologous Chondrocyte Implantation (ACI); ideally by assessing a biomarker in the blood. This study aimed to assess differences in the plasma proteome of individuals who respond well or poorly to ACI. Isobaric tag for relative and absolute quantitation (ITRAQ)
Introduction. Autologous fat grafting has favourable potential as a regenerative strategy and is the current gold-standard to repair large contour defects, as needed in breast reconstruction after mastectomy and traumatic soft tissue reconstruction. Clinically, there is a limit on the volume of lipoaspirate which can be utilised to repair a soft-tissue defect. Surgical complications are the result of poor structural fidelity of lipoaspirate and graft resorption as a filling material and are hindered further by poor graft vascularisation. This study aims to develop injectable lipoaspirate-derived adipose tissue grafts with enhanced biologically and clinically-admissible structural and functional properties adopting light photocrosslinking of unmodified lipoaspirate. Methods. Patient-derived lipoaspirate was harvested and crosslinked using novel photoinitiator and exposure to visible light (wavelength 450nm) in surgery, establishing bonds between extracellular matrix (ECM) proteins within the material. The degree of crosslinking was tuned (photoinitiator concentration, light exposure, light intensity) and covalent bond formation measured using
Meniscal injuries affect over 1.5 million people across Europe and the USA annually. Injury greatly reduces knee joint mobility and quality of life and frequently leads to the development of osteoarthritis. Tissue engineered strategies have emerged in response to a lack of viable treatments for meniscal pathologies. However, to date, constructs mimicking the structural and functional organisation of native tissue, whilst promoting deposition of new extracellular matrix, remains a bottleneck in meniscal repair. 3D bioprinting allows for deposition and patterning of biological materials with high spatial resolution. This project aims to develop a biomimetic 3D bioprinted meniscal substitute. Meniscal tissue was characterised to effectively inform the design of biomaterials for bioprinting constructs with appropriate structural and functional properties. Histology, gene expression and
Obesity is correlated with the development of osteoporotic diseases. Gut microbiota-derived metabolite trimethylamine-n-oxide (TMAO) accelerates obesity-mediated tissue deterioration. This study was aimed to investigate what role TMAO may play in osteoporosis development during obesity. Mice were fed with high-fat diet (HFD; 60 kcal% fat) or chow diet (CD; 10 kcal% fat) or 0.2% TMAO in drinking water for 6 months. Body adiposis and bone microstructure were investigated using μCT imaging. Gut microbiome and serum metabolome were characterized using 16S rRNA sequencing and liquid chromatography-tandem
Preventing infections in joint replacements is a major ongoing challenge, with limited effective clinical technologies currently available for uncemented knee and hip prostheses. This research aims to develop a coating for titanium implants, consisting of a supported lipid bilayer (SLB) encapsulating an antimicrobial agent. The SLB will be robustly tethered to the titanium using self-assembled monolayers (SAMs) of octadecylphosphonic acid (ODPA). The chosen antimicrobial is Novobiocin, a coumarin-derived antibiotic known to be effective against resistant strains of Staphylococcus aureus. ODPA SAMs were deposited on TiO. 2. -coated quartz crystal microbalance (QCM) sensors using two environmentally friendly non-polar solvents (anisole and cyclopentyl methyl ether, CPME), two concentrations of ODPA (0.5mM and 1mM) and two processing temperatures (21°C and 60°C). QCM, water contact angle measurements, X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and temperature-programmed desorption
Aim. Antibiotic concentration at the infected site is a relevant information to gain knowledge about deep-seated infections. The combination of antibiotic therapy and debridement is often indicated to treat these infections. At University Hospital Basel the most frequently administered antibiotic before debridement is amoxicillin in combination with clavulanic acid. Amoxicillin is a fragile beta-lactam antibiotic that brings multiple challenges for its quantification. As for many sample materials only little material is available, the aim of this work was to establish a sensitive and reliable quantification method for amoxicillin that only requires a small sample mass. We did not quantify clavulanic acid as we focused on the drug with antibiotic action. Method. Usually discarded sample material during debridement was collected and directly frozen. The thawed tissues were prepared using simple protein precipitation and manual homogenization with micro pestles followed by a matrix cleanup with online solid-phase extraction. Separation was performed by HPLC followed by heated electrospray ionization and tandem
Aim. Prosthetic joint infections (PJI) are a common reason for revisions in patients that underwent total arthroplasty of the hip (THA) or knee (TKA). Extensive antibiotic treatment follows while a clear understanding of target site concentrations is lacking. The aim is to investigate the target site concentrations, like bone and synovial tissue concentrations, which consequently may lead to an optimisation of the dosing regiments of cefuroxime of PJI patients suffering from pain and immobility. Dosing optimisation may lead to a reduced risk of (re-)infection and adverse effects like renal-insufficiency and therefore lower health-care costs. Method. Patients (n=26) with PJI of hip or knee undergoing a one- or two-stage revision treated with cefuroxime were included as part of the ASTERICS study. During implant removal two samples were collected 15-30 and 60-120 minutes after IV infusion of plasma, bone tissue and synovial tissue and one synovial fluid sample. Samples were analysed using a UltraPerformance Convergence Chromotography – quadruple
Aim. Dalbavancin is a lipoglycopeptide with a broad antimicrobial spectrum against Gram-positive bacteria and effect against microorganisms in biofilm in vitro. Its pharmacokinetic properties, with an exceptionally long half-life of approximately 300 hours, allow for simplified administration that may be of value in the long-term treatment of bone and joint infections, such as prosthetic joint infections (PJIs). Several case reports and case series with “off-lable” treatment with dalbavancin of PJIs exist, but the optimal dosing regimen remains to be defined. Therapeutic drug monitoring (TDM) is recommended for treatment with >2 doses of dalbavancin. In the absence of TDM, the Swedish national guidelines for bone and joint infections (2023, . www.infektion.net. ) recommends a loading dose of dalbavancin 1,500 mg on day 1 and 1,500 mg on days 8 – 14, after which from day 28 1,000 mg is given biweekly or 500 mg every week. The aim of the present study was to determine trough levels of dalbavancin in patients with long-term treatment of PJIs according to the national guidelines. Method. Twelve patients with PJI were treated with at least 6 doses of dalbavancin, of which the first two doses were 1500 mg and the following doses were 1000 every second week, and prospectively sampled biweekly for determination of serum concentrations (trough levels) of dalbavancin which was measured by liquid chromatography coupled to electrospray tandem
Aim. S. aureus and S. epidermidis remain the leading biofilm-forming agents causing orthopedic implant-associated infections (OIAI), but other coagulase-negative Staphylococcus (CoNS) with clinical importance is emerging. Besides, few studies have assessed specific genomic traits associated with patient outcome. This is a preliminary descriptive study of phenotypic and genomic features identified in clinical isolates of S. aureus and CoNS isolates recovered from OIAIs patients that progressed to treatment failure. Methods. Ten isolates were identified by matrix-time-of-flight laser-assisted desorption
Background. Surgical site infection following spine surgery is associated with increased morbidity, mortality and increased cost for the health care system. The reported pooled incidence is 3%. Perioperative antibiotic prophylaxis is a key factor in lowering the risk of acquiring an infection. Previous studies have assessed perioperative cefuroxime concentrations in the anterior column of the cervical spine with an anterior surgical approach. However, the majority of surgeries are performed in the posterior column and often involve the lumbar spine. Accordingly, the objective was to compare the perioperative tissue concentrations of cefuroxime in the anterior and posterior column of the same lumbar vertebra using microdialysis in an experimental porcine model. Method. The lumbar vertebral column was exposed in 8 female pigs. Microdialysis catheters were placed for sampling in the anterior column (vertebral body) and posterior column (posterior arch) within the same vertebra (L5). Cefuroxime (1.5 g) was administered intravenously over 10 min. Microdialysates and plasma samples were continuously obtained over 8 hours. Cefuroxime concentrations were quantified by Ultra High Performance Liquid Chromatography Tandem
We carried out metal artefact-reduction MRI, three-dimensional CT measurement of the position of the component and inductively-coupled plasma
In a recent phase 2 superiority clinical trial we demonstrated that a single dose of 60mg of the human monoclonal antibody denosumab inhibits osteolytic lesion activity in patients undergoing revision total hip arthroplasty (THA), demonstrating proof of biological efficacy for this clinical application. Here, we examined the effect that denosumab has on disease biology at the osteolysis tissue level. Osteolytic tissue taken from the prosthesis-bone lesion interface at revision surgery in patients with osteolysis (n=10 participants that had received a single 60 mg dose of denosumab 8 weeks prior to revision surgery and n=10 that had received placebo) was examined for total genetic message activity and protein levels using whole genome sequencing and
Aim. It is traditionally stated that around 80% of all periprosthetic joint infections (PJI) are caused by well-known gram-positive organisms such as Staphylococcus aureus. With the advances in diagnostic modalities and improved abilities to isolate infective organisms, we believe the organism profile causing PJI has changed over time and includes numerous other organisms that were either not recognized as pathogens and/or considered as contaminants. Method. We retrospectively reviewed the medical records of 1,363 patients with confirmed PJI (559 THA and 804 TKA) who received treatment at our institution between 2000 and 2019. Pertinent data related to demographics, microbiological findings, and outcome of treatment were collected. Organisms were differentiated using culture or confirmed by Matrix-Assisted Laser Desorption Ionization-time of flight (MALDI-tof)