Advertisement for orthosearch.org.uk
Results 1 - 6 of 6
Results per page:
Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_13 | Pages 47 - 47
1 Dec 2022
Cherry A Eseonu K Ahn H
Full Access

Lumbar fusion surgery is an established procedure for the treatment of several spinal pathologies. Despite numerous techniques and existing devices, common surgical trends in lumbar fusion surgery are scarcely investigated. The purpose of this Canada-based study was to provide a descriptive portrait of current surgeons’ practice and implant preferences in lumbar fusion surgery while comparing findings to similar investigations performed in the United Kingdom. Canadian Spine Society (CSS) members were sampled using an online questionnaire which was based on previous investigations performed in the United Kingdom. Fifteen questions addressed the various aspects of surgeons’ practice: fusion techniques, implant preferences, and bone grafting procedures. Responses were analyzed by means of descriptive statistics. Of 139 eligible CSS members, 41 spinal surgeons completed the survey (29.5%). The most common fusion approach was via transforaminal lumber interbody fusion (TLIF) with 87.8% performing at least one procedure in the previous year. In keeping with this, 24 surgeons (58.5%) had performed 11 to 50 cases in that time frame. Eighty-six percent had performed no lumbar artificial disc replacements over their last year of practice. There was clear consistency on the relevance of a patient specific management (73.2%) on the preferred fusion approach. The most preferred method was pedicle screw fixation (78%). The use of stand-alone cages was not supported by any respondents. With regards to the cage material, titanium cages were the most used (41.5%). Published clinical outcome data was the most important variable in dictating implant choice (87.8%). Cage thickness was considered the most important aspect of cage geometry and hyperlordotic cages were preferred at the lower lumbar levels. Autograft bone graft was most commonly preferred (61.0%). Amongst the synthetic options, DBX/DBM graft (64.1%) in injectable paste form (47.5%) was preferred. In conclusion, findings from this study are in partial agreement with previous work from the United Kingdom, but highlight the variance of practice within Canada and the need for large-scale clinical studies aimed to set specific guidelines for certain pathologies or patient categories


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_20 | Pages 75 - 75
1 Nov 2016
Aoude A Nooh A Fortin M Aldebayan S Jarzem P Ouellet J Weber M
Full Access

Hemorrhage and transfusion requirements in spine surgery are common. This is especially true for thoracic and lumbar fusion surgeries. The purpose of this papersi to determine predictive factors for transfusion and their effect on short-term post-operative outcomes for thoracic and lumbar fusions. The American College of Surgeons National Surgical Quality Improvement Program (ACS-NSQIP) database was used to identify patients that underwent lumbar or thoracic fusion surgery from 2010 to 2013. Univariate and multivariate regression analysis was used to determine predictive factors and post-operative complications associated with transfusion. A total of 14,249 patients were included in this study; 13,586 had lumbar fusion and 663 had thoracic fusion surgery. The prevalence of transfusion was 35% for thoracic fusion and 17.5% for lumbar fusion. The multivariate analysis showed that age between 50–60 (OR 1.38, CI: 1.23–1.54), age between 61–70 (OR 1.65, CI: 1.40–1.95), dyspnea (OR 1.11, CI: 1.02–1.23), hypertension (OR 1.14, CI: 1.02–1.27), ASA class (OR 1.73, 1.18–1.45), pre-operative blood transfusion (OR 1.91, CI: 1.04–3.49), and extended surgical time (OR 4.51, CI: 4.09–4.98) were predictors of blood transfusion requirements for lumbar fusion. While only pre-operative BUN (OR 1.04, CI: 1.01–1.06) and extended surgical time (OR 4.70, CI: 3.12–6.96) were predictors of transfusion for thoracic fusion. In contrast, higher pre-operative hematocrit was protective against transfusion. Patients transfused who underwent lumbar fusion had an increased risk to develop superficial wound infection, deep wound infection, venous thromboembolism, myocardial infarction and had longer length of hospital stay. Patients transfused who underwent thoracic fusion were more likely to have venous thromboembolism and extended length of hospital stay. However, mortality was not associated with blood transfusion. This study used a large database to characterise the incidence, predictors and post-operative complications associated with blood transfusion in thoracic and lumbar fusion surgeries. Pre- and post-operative planning for patients deemed to be at high-risk of requiring blood transfusion should be considered to reduce post-operative complication in this population


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_20 | Pages 70 - 70
1 Nov 2016
Aoude A Nooh A Fortin M Aldebayan S Abduljabbar F Jarzem P Ouellet J Weber M
Full Access

The objective of this paper is to demonstrate the difference in post-operative complication rates between Computer-assisted surgery (CAS) and conventional techniques in spine surgery. Several studies have shown that the accuracy of pedicle screw placement significantly improves with use of CAS. Yet, few studies have compared the incidence of post-operative complications between CAS and conventional techniques. The American College of Surgeons National Surgical Quality Improvement Program (ACS-NSQIP) database was used to identify patients that underwent posterior lumbar fusion from 2011 to 2013. Multivariate analysis was conducted to demonstrate the difference in post-operative complication rates between CAS and conventional techniques in spine surgery. Out of 15,222 patients, 14,382 (95.1%) were operated with conventional techniques and 740 (4.90%) were operated with CAS. Multivariate analysis showed that patients in the CAS group had less odds to experience adverse events post-operatively (OR 0.57, P <0.001). This paper examined the complications in lumbar spinal surgery with or without the use of CAS. These results suggest that CAS may provide a safer technique for implant placement in lumbar fusion surgeries


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_7 | Pages 100 - 100
1 Jul 2020
Vu K Phan P Stratton A Kingwell S Hoda M Wai E
Full Access

Resident involvement in the operating room is a vital component of their medical education. Conflicting and limited research exists regarding the effects of surgical resident participation on spine surgery patient outcomes. Our objective was to determine the effect of resident involvement on surgery duration, length of hospital stay and 30-day post-operative complication rates. This study was a multicenter retrospective analysis of the prospectively collected American College of Surgeons National Surgical Quality Improvement Program (ACS NSQIP) database. All anterior cervical or posterior lumbar fusion surgery patients were identified. Patients who had missing trainee involvement information, surgery for cancer, preoperative infection or dirty wound classification, spine fractures, traumatic spinal cord injury, intradural surgery, thoracic surgery and emergency surgery were excluded. Propensity score for risk of any complication was calculated to account for baseline characteristic differences between the attending alone and trainee present group. Multivariate logistic regression was used to investigate the impact of resident involvement on surgery duration, length of hospital stay and 30 day post-operative complication rates. 1441 patients met the inclusion criteria: 1142 patients had surgeries with an attending physician alone and 299 patients had surgeries with trainee involvement. After adjusting using the calculated propensity score, the multivariate analysis demonstrated that there was no significant difference in any complication rates between surgeries involving trainees compared to surgeries with attending surgeons alone. Surgery times were found to be significantly longer for surgeries involving trainees. To further explore this relationship, separate analyses were performed for tertile of predicted surgery duration, cervical or lumbar surgery, instrumentation, inpatient or outpatient surgery. The effect of trainee involvement on increasing surgery time remained significant for medium predicted surgery duration, longer predicted surgery duration, cervical surgery, lumbar surgery, lumbar fusion surgery and inpatient surgery. There were no significant differences reported for any other factors. After adjusting for confounding, we demonstrated in a national database that resident involvement in surgeries did not increase complication rates, length of hospital stay or surgical duration of more routine surgical cases. We found that resident involvement in surgical cases that were generally more complexed resulted in increased surgery time. Further study is required to determine the relationship between surgery complexity and the effect of resident involvement on surgery duration


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_12 | Pages 29 - 29
1 Dec 2022
Tyrpenou E Lee D Robbins S Ippersiel P Antoniou J
Full Access

Hip instability is one of the most common causes for total hip arthroplasty (THA) revision surgery. Studies have indicated that lumbar fusion (LF) surgery is a risk factor for hip dislocation. Instrumented spine fusion surgery decreases pelvic tilt, which might lead to an increase in hip motion to accommodate this postural change. To the best of our knowledge, spine-pelvis-hip kinematics during a dynamic activity in patients that previously had both a THA and LF have not been investigated. Furthermore, patients with a combined THA and LF tend to have greater disability. The purpose was to examine spine-pelvis-hip kinematics during a sit to stand task in patients that have had both THA and LF surgeries and compare it to a group of patients that had a THA with no history of spine surgery. The secondary purpose was to compare pain, physical function, and disability between these patients. This cross-sectional study recruited participants that had a combined THA and LF (n=10; 6 females, mean age 73 y) or had a THA only (n=11; 6 females, mean age 72 y). Spine, pelvis, and hip angles were measured using a TrakSTAR motion capture system sampled at 200 Hz. Sensors were mounted over the lateral thighs, base of the sacrum, and the spinous process of the third lumbar,12th thoracic, and ninth thoracic vertebrae. Participants completed 10 trials of a standardized sit-to-stand-to-sit task. Hip, pelvis, lower lumbar, upper lumbar, and lower thoracic sagittal joint angle range of motion (ROM) were calculated over the entire task. In addition, pain, physical function, and disability were measured with clinical outcomes: Hip Disability Osteoarthritis Outcome Score (pain and physical function), Oswestry Low Back Disability Questionnaire (disability), and Harris Hip Score (pain, physical function, motion). Physical function performance was measured using 6-Minute Walk Test, Stair Climb Test, and 30s Chair Test. Angle ROMs during the sit-to-stand-to-sit task and clinical outcomes were compared between THA+LF and THA groups using independent t-tests and effect sizes (d). The difference in hip ROM was approaching statistical significance (p=0.07). Specifically, the THA+LF group had less hip ROM during the sit-to-stand-to-sit task than the THA only group (mean difference=11.17, 95% confidence interval=-1.13 to 23.47), which represented a large effect size (d=0.83). There were no differences in ROM for pelvis (p=0.54, d=0.28) or spinal (p=0.14 to 0.97; d=0.02 to 0.65) angles between groups. The THA+LF group had worse clinical outcomes for all measures of pain, physical function, and disability (p=0.01 to 0.06), representing large effect sizes (d=0.89 to 2.70). Hip ROM was not greater in the THA+LF group, and thus this is unlikely a risk factor for hip dislocation during this specific sit-to-stand-to-sit task. Other functional tasks that demand greater excursions in the joints should be investigated. Furthermore, the lack of differences in spinal and pelvis ROM were likely due to the task and the THA+LF group had spinal fusions at different levels. Combined THA+LF results in worse clinical outcomes and additional rehabilitation is required for these patients


Bone & Joint Open
Vol. 3, Issue 8 | Pages 628 - 640
1 Aug 2022
Phoon KM Afzal I Sochart DH Asopa V Gikas P Kader D

Aims

In the UK, the NHS generates an estimated 25 megatonnes of carbon dioxide equivalents (4% to 5% of the nation’s total carbon emissions) and produces over 500,000 tonnes of waste annually. There is limited evidence demonstrating the principles of sustainability and its benefits within orthopaedic surgery. The primary aim of this study was to analyze the environmental impact of orthopaedic surgery and the environmentally sustainable initiatives undertaken to address this. The secondary aim of this study was to describe the barriers to making sustainable changes within orthopaedic surgery.

Methods

A literature search was performed according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines through EMBASE, Medline, and PubMed libraries using two domains of terms: “orthopaedic surgery” and “environmental sustainability”.