Advertisement for orthosearch.org.uk
Results 1 - 20 of 493
Results per page:
Bone & Joint Open
Vol. 5, Issue 7 | Pages 592 - 600
18 Jul 2024
Faschingbauer M Hambrecht J Schwer J Martin JR Reichel H Seitz A

Aims. Patient dissatisfaction is not uncommon following primary total knee arthroplasty. One proposed method to alleviate this is by improving knee kinematics. Therefore, we aimed to answer the following research question: are there significant differences in knee kinematics based on the design of the tibial insert (cruciate-retaining (CR), ultra-congruent (UC), or medial congruent (MC))?. Methods. Overall, 15 cadaveric knee joints were examined with a CR implant with three different tibial inserts (CR, UC, and MC) using an established knee joint simulator. The effects on coronal alignment, medial and lateral femoral roll back, femorotibial rotation, bony rotations (femur, tibia, and patella), and patellofemoral length ratios were determined. Results. No statistically significant differences were found regarding coronal alignment (p = 0.087 to p = 0.832). The medial congruent insert demonstrated restricted femoral roll back (mean medial 37.57 mm; lateral 36.34 mm), while the CR insert demonstrated the greatest roll back (medial 42.21 mm; lateral 37.88 mm; p < 0.001, respectively). Femorotibial rotation was greatest with the CR insert with 2.45° (SD 4.75°), then the UC insert with 1.31° (SD 4.15°; p < 0.001), and lowest with the medial congruent insert with 0.8° (SD 4.24°; p < 0.001). The most pronounced patella shift, but lowest patellar rotation, was noted with the CR insert. Conclusion. The MC insert demonstrated the highest level of constraint of these inserts. Femoral roll back, femorotibial rotation, and single bony rotations were lowest with the MC insert. The patella showed less shifting with the MC insert, but there was significantly increased rotation. While the medial congruent insert was found to have highest constraint, it remains uncertain if this implant recreates native knee kinematics or if this will result in improved patient satisfaction. Cite this article: Bone Jt Open 2024;5(7):592–600


Bone & Joint Research
Vol. 12, Issue 4 | Pages 285 - 293
17 Apr 2023
Chevalier A Vermue H Pringels L Herregodts S Duquesne K Victor J Loccufier M

Aims. The goal was to evaluate tibiofemoral knee joint kinematics during stair descent, by simulating the full stair descent motion in vitro. The knee joint kinematics were evaluated for two types of knee implants: bi-cruciate retaining and bi-cruciate stabilized. It was hypothesized that the bi-cruciate retaining implant better approximates native kinematics. Methods. The in vitro study included 20 specimens which were tested during a full stair descent with physiological muscle forces in a dynamic knee rig. Laxity envelopes were measured by applying external loading conditions in varus/valgus and internal/external direction. Results. The laxity results show that both implants are capable of mimicking the native internal/external-laxity during the controlled lowering phase. The kinematic results show that the bi-cruciate retaining implant tends to approximate the native condition better compared to bi-cruciate stabilized implant. This is valid for the internal/external rotation and the anteroposterior translation during all phases of the stair descent, and for the compression-distraction of the knee joint during swing and controlled lowering phase. Conclusion. The results show a better approximation of the native kinematics by the bi-cruciate retaining knee implant compared to the bi-cruciate stabilized knee implant for internal/external rotation and anteroposterior translation. Whether this will result in better patient outcomes remains to be investigated. Cite this article: Bone Joint Res 2023;12(4):285–293


Bone & Joint Research
Vol. 9, Issue 11 | Pages 761 - 767
1 Nov 2020
Hada M Mizu-uchi H Okazaki K Murakami K Kaneko T Higaki H Nakashima Y

Aims. This study aims to investigate the effects of posterior tibial slope (PTS) on knee kinematics involved in the post-cam mechanism in bi-cruciate stabilized (BCS) total knee arthroplasty (TKA) using computer simulation. Methods. In total, 11 different PTS (0° to 10°) values were simulated to evaluate the effect of PTS on anterior post-cam contact conditions and knee kinematics in BCS TKA during weight-bearing stair climbing (from 86° to 6° of knee flexion). Knee kinematics were expressed as the lowest points of the medial and lateral femoral condyles on the surface of the tibial insert, and the anteroposterior translation of the femoral component relative to the tibial insert. Results. Anterior post-cam contact in BCS TKA was observed with the knee near full extension if PTS was 6° or more. BCS TKA showed a bicondylar roll forward movement from 86° to mid-flexion, and two different patterns from mid-flexion to knee extension: screw home movement without anterior post-cam contact and bicondylar roll forward movement after anterior post-cam contact. Knee kinematics in the simulation showed similar trends to the clinical in vivo data and were almost within the range of inter-specimen variability. Conclusion. Postoperative knee kinematics in BCS TKA differed according to PTS and anterior post-cam contact; in particular, anterior post-cam contact changed knee kinematics, which may affect the patient’s perception of the knee during activities. Cite this article: Bone Joint Res 2020;9(11):761–767


Bone & Joint Research
Vol. 6, Issue 8 | Pages 514 - 521
1 Aug 2017
Mannering N Young T Spelman T Choong PF

Objectives. Whilst gait speed is variable between healthy and injured adults, the extent to which speed alone alters the 3D in vivo knee kinematics has not been fully described. The purpose of this prospective study was to understand better the spatiotemporal and 3D knee kinematic changes induced by slow compared with normal self-selected walking speeds within young healthy adults. Methods. A total of 26 men and 25 women (18 to 35 years old) participated in this study. Participants walked on a treadmill with the KneeKG system at a slow imposed speed (2 km/hr) for three trials, then at a self-selected comfortable walking speed for another three trials. Paired t-tests, Wilcoxon signed-rank tests, Mann-Whitney U tests and Spearman’s rank correlation coefficients were conducted using Stata/IC 14 to compare kinematics of slow versus self-selected walking speed. Results. Both cadence and step length were reduced during slow gait compared with normal gait. Slow walking reduced flexion during standing (10.6° compared with 13.7°; p < 0.0001), and flexion range of movement (ROM) (53.1° compared with 57.3°; p < 0.0001). Slow walking also induced less adduction ROM (8.3° compared with 10.0°; p < 0.0001), rotation ROM (11.4. °. compared with 13.6. °. ; p < 0.0001), and anteroposterior translation ROM (8.5 mm compared with 10.1 mm; p < 0.0001). Conclusion. The reduced spatiotemporal measures, reduced flexion during stance, and knee ROM in all planes induced by slow walking demonstrate a stiff knee gait, similar to that previously demonstrated in osteoarthritis. Further research is required to determine if these characteristics induced in healthy knees by slow walking provide a valid model of osteoarthritic gait. Cite this article: N. Mannering, T. Young, T. Spelman, P. F. Choong. Three-dimensional knee kinematic analysis during treadmill gait: Slow imposed speed versus normal self-selected speed. Bone Joint Res 2017;6:514–521. DOI: 10.1302/2046-3758.68.BJR-2016-0296.R1


Bone & Joint Research
Vol. 8, Issue 12 | Pages 593 - 600
1 Dec 2019
Koh Y Lee J Lee H Kim H Chung H Kang K

Aims. Commonly performed unicompartmental knee arthroplasty (UKA) is not designed for the lateral compartment. Additionally, the anatomical medial and lateral tibial plateaus have asymmetrical geometries, with a slightly dished medial plateau and a convex lateral plateau. Therefore, this study aims to investigate the native knee kinematics with respect to the tibial insert design corresponding to the lateral femoral component. Methods. Subject-specific finite element models were developed with tibiofemoral (TF) and patellofemoral joints for one female and four male subjects. Three different TF conformity designs were applied. Flat, convex, and conforming tibial insert designs were applied to the identical femoral component. A deep knee bend was considered as the loading condition, and the kinematic preservation in the native knee was investigated. Results. The convex design, the femoral rollback, and internal rotation were similar to those of the native knee. However, the conforming design showed a significantly decreased femoral rollback and internal rotation compared with that of the native knee (p < 0.05). The flat design showed a significant difference in the femoral rollback; however, there was no difference in the tibial internal rotation compared with that of the native knee. Conclusion. The geometry of the surface of the lateral tibial plateau determined the ability to restore the rotational kinematics of the native knee. Surgeons and implant designers should consider the geometry of the anatomical lateral tibial plateau as an important factor in the restoration of native knee kinematics after lateral UKA. Cite this article: Bone Joint Res 2019;8:593–600


Aims. Mobile-bearing unicompartmental knee arthroplasty (UKA) with a flat tibial plateau has not performed well in the lateral compartment, leading to a high rate of dislocation. For this reason, the Domed Lateral UKA with a biconcave bearing was developed. However, medial and lateral tibial plateaus have asymmetric anatomical geometries, with a slightly dished medial and a convex lateral plateau. Therefore, the aim of this study was to evaluate the extent at which the normal knee kinematics were restored with different tibial insert designs using computational simulation. Methods. We developed three different tibial inserts having flat, conforming, and anatomy-mimetic superior surfaces, whereas the inferior surface in all was designed to be concave to prevent dislocation. Kinematics from four male subjects and one female subject were compared under deep knee bend activity. Results. The conforming design showed significantly different kinematics in femoral rollback and internal rotation compared to that of the intact knee. The flat design showed significantly different kinematics in femoral rotation during high flexion. The anatomy-mimetic design preserved normal knee kinematics in femoral rollback and internal rotation. Conclusion. The anatomy-mimetic design in lateral mobile UKA demonstrated restoration of normal knee kinematics. Such design may allow achievement of the long sought normal knee characteristics post-lateral mobile UKA. However, further in vivo and clinical studies are required to determine whether this design can truly achieve a more normal feeling of the knee and improved patient satisfaction. Cite this article: Bone Joint Res 2020;9(7):421–428


Bone & Joint Research
Vol. 8, Issue 3 | Pages 126 - 135
1 Mar 2019
Sekiguchi K Nakamura S Kuriyama S Nishitani K Ito H Tanaka Y Watanabe M Matsuda S

Objectives. Unicompartmental knee arthroplasty (UKA) is one surgical option for treating symptomatic medial osteoarthritis. Clinical studies have shown the functional benefits of UKA; however, the optimal alignment of the tibial component is still debated. The purpose of this study was to evaluate the effects of tibial coronal and sagittal plane alignment in UKA on knee kinematics and cruciate ligament tension, using a musculoskeletal computer simulation. Methods. The tibial component was first aligned perpendicular to the mechanical axis of the tibia, with a 7° posterior slope (basic model). Subsequently, coronal and sagittal plane alignments were changed in a simulation programme. Kinematics and cruciate ligament tensions were simulated during weight-bearing deep knee bend and gait motions. Translation was defined as the distance between the most medial and the most lateral femoral positions throughout the cycle. Results. The femur was positioned more medially relative to the tibia, with increasing varus alignment of the tibial component. Medial/lateral (ML) translation was smallest in the 2° varus model. A greater posterior slope posteriorized the medial condyle and increased anterior cruciate ligament (ACL) tension. ML translation was increased in the > 7° posterior slope model and the 0° model. Conclusion. The current study suggests that the preferred tibial component alignment is between neutral and 2° varus in the coronal plane, and between 3° and 7° posterior slope in the sagittal plane. Varus > 4° or valgus alignment and excessive posterior slope caused excessive ML translation, which could be related to feelings of instability and could potentially have negative effects on clinical outcomes and implant durability. Cite this article: K. Sekiguchi, S. Nakamura, S. Kuriyama, K. Nishitani, H. Ito, Y. Tanaka, M. Watanabe, S. Matsuda. Bone Joint Res 2019;8:126–135. DOI: 10.1302/2046-3758.83.BJR-2018-0208.R2


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 10 | Pages 1334 - 1340
1 Oct 2011
Nicholson JA Sutherland AG Smith FW

Abnormal knee kinematics following reconstruction of the anterior cruciate ligament may exist despite an apparent resolution of tibial laxity and functional benefit. We performed upright, weight-bearing MR scans of both knees in the sagittal plane at different angles of flexion to determine the kinematics of the knee following unilateral reconstruction (n = 12). The uninjured knee acted as a control. Scans were performed pre-operatively and at three and six months post-operatively. Anteroposterior tibial laxity was determined using an arthrometer and patient function by validated questionnaires before and after reconstruction. In all the knees with deficient anterior cruciate ligaments, the tibial plateau was displaced anteriorly and internally rotated relative to the femur when compared with the control contralateral knee, particularly in extension and early flexion (mean lateral compartment displacement: extension 7.9 mm (. sd 4.8), p = 0.002 and 30° flexion 5.1 mm (. sd.  3.6), p = 0.004). In all ten patients underwent post-operative scans. Reconstruction reduced the subluxation of the lateral tibial plateau at three months, with resolution of anterior displacement in early flexion, but not in extension (p = 0.015). At six months, the reconstructed knee again showed anterior subluxation in both the lateral (mean: extension 4.2 mm (sd 4.2), p = 0.021 and 30° flexion 3.2 mm (. sd. 3.3), p = 0.024) and medial compartments (extension, p = 0.049). . Our results show that despite improvement in laxity and functional benefit, abnormal knee kinematics remain at six months and actually deteriorate from three to six months following reconstruction of the anterior cruciate ligament


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_6 | Pages 83 - 83
1 Mar 2017
Meneghini M Ishmael M Deckard E Ziemba-Davis M Warth L
Full Access

Introduction. Reports cite up to 20% of total knee arthroplasty (TKA) patients are not satisfied. Recent focus on alignment and balance has perhaps overshadowed kinematics as a key determinant of outcomes. Some propose that reproducing the native knee kinematics of lateral-pivot motion in early flexion during walking will enact optimal TKA outcomes. The purpose of this study was to determine if intra-operative kinematic patterns correlate with patient function, pain and satisfaction after TKA. Methods. A retrospective review of consecutive TKA's performed by two surgeons was performed. After final components were implanted and balanced, sensor-embedded tibial trials were inserted and kinematic patterns were recorded through range-of-motion. Femoro-tibial contact points were recorded at four distinct flexion points (0°, 45°, 90° and full flexion). Center of rotation kinematic patterns were calculated and categorized as medial pivot, lateral pivot or translation at each measurement range via established criteria. Knees with lateral (L) pivot in early flexion between 0 and 45 ° and medial (M) pivot beyond 90°, regardless of the mid-flexion pivot pattern, formed the experimental group designated as LXM. All other patterns were designated non-LXM and formed the control group. Modern, validated clinical outcome measures (Knee Society Score, EQ5D, UCLA) were obtained preoperatively and at minimum one-year postoperatively. Results. 185 consecutive TKAs were analyzed and 33 were excluded due to sensor device malfunction, atypical hardware, unresurfaced patella, surgery at a non-study hospital, early infection, aseptic loosening revision, ipsilateral hip disease, or subsequent neurologic disease or death unrelated to the index TKA resulting in a final sample size of 152 patients. Twelve patients (7.9%) were lost to minimum one-year follow-up, and two were excluded from analysis due to outlier values. Seventy-five percent of the final sample was female. Mean age, height, weight, and BMI were 63.6 years, 167.0 cm, 94.5 kg, and 33.9, respectively. Patients in the LXM group tended to be slightly older (66 vs. 63 years, p = 0.062) and had fewer months of follow-up (18.3 vs. 21.6 months, p = 0.030). Controlling for age and follow-up, patients with the LXM kinematic pattern demonstrated better postoperative function scores (mean 74.6 vs. 66.3 points, p = 0.032) and greater functional improvement from preoperative baseline (mean 40.3 vs. 30.0 points, p = 0.001). The LXM kinematic pattern also was associated with greater improvement in the Knee Society objective score (mean 39.6 vs. 32.3 points, p = 0.053). There was a trend for LXM to demonstrate greater improvement in satisfaction (mean 20.1 vs. 17.3 points, p 0.086). EQ-5D health care quality of life and UCLA activity level score were unrelated to kinematic pattern. Conclusion. TKA patients with a lateral pivot kinematic pattern in the early range of motion and a medial pattern in high flexion beyond 90-degrees demonstrated superior functional outcomes and objective clinical knee scores. This supports the premise that TKA kinematic patterns that replicate native knee kinematics unique to certain degrees of flexion will have optimal function, improved clinical outcome, and less pain


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 3 | Pages 324 - 330
1 Mar 2006
Scarvell JM Smith PN Refshauge KM Galloway HR Woods KR

This prospective study used magnetic resonance imaging to record sagittal plane tibiofemoral kinematics before and after anterior cruciate ligament reconstruction using autologous hamstring graft. Twenty patients with anterior cruciate ligament injuries, performed a closed-chain leg-press while relaxed and against a 150 N load. The tibiofemoral contact patterns between 0° to 90° of knee flexion were recorded by magnetic resonance scans. All measurements were performed pre-operatively and repeated at 12 weeks and two years.

Following reconstruction there was a mean passive anterior laxity of 2.1 mm (sd 2.3), as measured using a KT 1000 arthrometer, and the mean Cincinnati score was 90 (sd 11) of 100. Pre-operatively, the medial and lateral contact patterns of the injured knees were located posteriorly on the tibial plateau compared with the healthy contralateral knees (p = 0.014), but were no longer different at 12 weeks (p = 0.117) or two years postoperatively (p = 0.909). However, both reconstructed and healthy contralateral knees showed altered kinematics over time. At two years, the contact pattern showed less posterior translation of the lateral femoral condyle during flexion (p < 0.01).


The Journal of Bone & Joint Surgery British Volume
Vol. 84-B, Issue 7 | Pages 1075 - 1081
1 Sep 2002
Bull AMJ Earnshaw PH Smith A Katchburian MV Hassan ANA Amis AA

Our objectives were to establish the envelope of passive movement and to demonstrate the kinematic behaviour of the knee during standard clinical tests before and after reconstruction of the anterior cruciate ligament (ACL). An electromagnetic device was used to measure movement of the joint during surgery.

Reconstruction of the ACL significantly reduced the overall envelope of tibial rotation (10° to 90° flexion), moved this envelope into external rotation from 0° to 20° flexion, and reduced the anterior position of the tibial plateau (5° to 30° flexion) (p < 0.05 for all). During the pivot-shift test in early flexion there was progressive anterior tibial subluxation with internal rotation. These subluxations reversed suddenly around a mean position of 36 ± 9° of flexion of the knee and consisted of an external tibial rotation of 13 ± 8° combined with a posterior tibial translation of 12 ± 8 mm. This abnormal movement was abolished after reconstruction of the ACL.


Bone & Joint Research
Vol. 5, Issue 3 | Pages 80 - 86
1 Mar 2016
Scott G Imam MA Eifert A Freeman MAR Pinskerova V Field RE Skinner J Banks SA

Objectives

Throughout the 20th Century, it has been postulated that the knee moves on the basis of a four-bar link mechanism composed of the cruciate ligaments, the femur and the tibia. As a consequence, the femur has been thought to roll back with flexion, and total knee arthroplasty (TKA) prostheses have been designed on this basis. Recent work, however, has proposed that at a position of between 0° and 120° the medial femoral condyle does not move anteroposteriorly whereas the lateral femoral condyle tends, but is not obliged, to roll back – a combination of movements which equates to tibial internal/ femoral external rotation with flexion. The aim of this paper was to assess if the articular geometry of the GMK Sphere TKA could recreate the natural knee movements in situ/in vivo.

Methods

The pattern of knee movement was studied in 15 patients (six male: nine female; one male with bilateral TKAs) with 16 GMK Sphere implants, at a mean age of 66 years (53 to 76) with a mean BMI of 30 kg/m2 (20 to 35). The motions of all 16 knees were observed using pulsed fluoroscopy during a number of weight-bearing and non-weight-bearing static and dynamic activities.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 25 - 25
14 Nov 2024
Taylan O Louwagie T Bialy M Peersman G Scheys L
Full Access

Introduction. This study aimed to evaluate the effectiveness of a novel intraoperative navigation platform for total knee arthroplasty (TKA) in restoring native knee joint kinematics and strains in the medial collateral ligament (MCL) and lateral collateral ligament (LCL) during squatting motions. Method. Six cadaver lower limbs underwent computed tomography scans to design patient-specific guides. Using these scans, bony landmarks and virtual single-line collateral ligaments were identified to provide intraoperative real-time feedback, aided in bone resection, implant alignment, tibiofemoral kinematics, and collateral ligament elongations, using the navigation platform. The specimens were subjected to squatting (35°-100°) motions on a physiological ex vivo knee simulator, maintaining a constant 110N vertical ankle load regulated by active quadriceps and bilateral hamstring actuators. Subsequently, each knee underwent a medially-stabilized TKA using the mechanical alignment technique, followed by a retest under the same conditions used preoperatively. Using a dedicated wand, MCL and LCL insertions—anterior, middle, and posterior bundles—were identified in relation to bone-pin markers. The knee kinematics and collateral ligament strains were analyzed from 3D marker trajectories captured by a six-camera optical system. Result. Both native and TKA conditions demonstrated similar patterns in tibial valgus orientation (Root Mean Square Error (RMSE=1.7°), patellar flexion (RMSE=1.2°), abduction (RMSE=0.5°), and rotation (RMSE=0.4°) during squatting (p>0.13). However, a significant difference was found in tibial internal rotation between 35° and 61° (p<0.045, RMSE=3.3°). MCL strains in anterior (RMSE=1.5%), middle (RMSE=0.8%), and posterior (RMSE=0.8%) bundles closely matched in both conditions, showing no statistical differences (p>0.05). Conversely, LCL strain across all bundles (RMSE<4.6%) exhibited significant differences from mid to deep flexion (p<0.048). Conclusion. The novel intraoperative navigation platform not only aims to achieve planned knee alignment but also assists in restoring native knee kinematics and collateral ligament behavior through real-time feedback. Acknowledgment. This study was funded by Medacta International (Castel San Pietro, Switzerland)


Bone & Joint Open
Vol. 2, Issue 6 | Pages 397 - 404
1 Jun 2021
Begum FA Kayani B Magan AA Chang JS Haddad FS

Limb alignment in total knee arthroplasty (TKA) influences periarticular soft-tissue tension, biomechanics through knee flexion, and implant survival. Despite this, there is no uniform consensus on the optimal alignment technique for TKA. Neutral mechanical alignment facilitates knee flexion and symmetrical component wear but forces the limb into an unnatural position that alters native knee kinematics through the arc of knee flexion. Kinematic alignment aims to restore native limb alignment, but the safe ranges with this technique remain uncertain and the effects of this alignment technique on component survivorship remain unknown. Anatomical alignment aims to restore predisease limb alignment and knee geometry, but existing studies using this technique are based on cadaveric specimens or clinical trials with limited follow-up times. Functional alignment aims to restore the native plane and obliquity of the joint by manipulating implant positioning while limiting soft tissue releases, but the results of high-quality studies with long-term outcomes are still awaited. The drawbacks of existing studies on alignment include the use of surgical techniques with limited accuracy and reproducibility of achieving the planned alignment, poor correlation of intraoperative data to long-term functional outcomes and implant survivorship, and a paucity of studies on the safe ranges of limb alignment. Further studies on alignment in TKA should use surgical adjuncts (e.g. robotic technology) to help execute the planned alignment with improved accuracy, include intraoperative assessments of knee biomechanics and periarticular soft-tissue tension, and correlate alignment to long-term functional outcomes and survivorship


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_9 | Pages 3 - 3
1 Jun 2021
Dejtiar D Wesseling M Wirix-Speetjens R Perez M
Full Access

Introduction. Although total knee arthroplasty (TKA) is generally considered successful, 16–30% of patients are dissatisfied. There are multiple reasons for this, but some of the most frequent reasons for revision are instability and joint stiffness. A possible explanation for this is that the implant alignment is not optimized to ensure joint stability in the individual patient. In this work, we used an artificial neural network (ANN) to learn the relation between a given standard cruciate-retaining (CR) implant position and model-predicted post-operative knee kinematics. The final aim was to find a patient-specific implant alignment that will result in the estimated post-operative knee kinematics closest to the native knee. Methods. We developed subject-specific musculoskeletal models (MSM) based on magnetic resonance images (MRI) of four ex vivo left legs. The MSM allowed for the estimation of secondary knee kinematics (e.g. varus-valgus rotation) as a function of contact, ligament, and muscle forces in a native and post-TKA knee. We then used this model to train an ANN with 1800 simulations of knee flexion with random implant position variations in the ±3 mm and ±3° range from mechanical alignment. The trained ANN was used to find the implant alignment that resulted in the smallest mean-square-error (MSE) between native and post-TKA tibiofemoral kinematics, which we term the dynamic alignment. Results. Dynamic alignment average MSE kinematic differences to the native knees were 1.47 mm (± 0.89 mm) for translations and 2.89° (± 2.83°) for rotations. The implant variations required were in the range of ±3 mm and ±3° from the starting mechanical alignment. Discussion. In this study we showed that the developed tool has the potential to find an implant position that will restore native tibiofemoral kinematics in TKA. The proposed method might also be used with other alignment strategies, such as to optimize implant position towards native ligament strains. If native knee kinematics are restored, a more normal gait pattern can be achieved, which might result in improved patient satisfaction. The small changes required to achieve the dynamic alignment do not represent large modifications that might compromise implant survivorship. Conclusion. Patient-specific implant position predicted with MSM and ANN can restore native knee function in a post-TKA knee with a standard CR implant


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 68 - 68
1 Dec 2021
Bowd J Williams D de Vecchis M Wilson C Elson D Whatling G Holt C
Full Access

Abstract. Objectives. Principal Component Analysis (PCA) is a useful method for analysing human motion data. The objective of this study was to use PCA to quantify the biggest variance in knee kinematics waveforms between a Non-Pathological (NP) group and individuals awaiting High Tibial Osteotomy (HTO) surgery. Methods. Thirty knees (29 participants) who were scheduled for HTO surgery were included in this study. Twenty-eight NP volunteers were recruited into the study. Human motion analysis was performed during level gait using a modified Cleveland marker set. Subjects walked at their self-selected speed for a minimum of 6 successful trials. Knee kinematics were calculated within Visual3D (C-Motion). The first three Principal Components (PCs) of each input variable were selected. Single-component reconstruction was performed alongside representative extremes of each PC to aid interpretation of the biomechanical feature reconstructed by each component. Results. Pre-operatively patient demographics included (age: 50.70 (8.71) years; height: 1.75 (.11) m; body mass: 90.57 (20.17) kg; mTFA: 7.75 (3.72) degrees varus; gait speed: 1.06 (0.23) m/s). The HTO cohort was significantly older and had a higher mass than the NP control participants. For knee kinematics the first three PCs explained 88%, 95% and 89% of the sagittal, frontal, and transverse planes, respectively. The main variances can be explained by sagittal plane magnitude differences, peak swing is associated with toe-off, a reduced knee flexion angle is associated with a longer time spent in stance, pre-HTO remain adducted during stance and pre-HTO patients remain more externally rotated during stance and latter part of swing. Conclusions. This study has introduced PCA in trying to better understand the biomechanical differences between a control group and a cohort with medial knee osteoarthritis varus deformity awaiting HTO. Further analysis will be undertaken using PCA comparing pre- and post-surgery which will be of importance in clinical decision making


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 35 - 35
17 Nov 2023
Timme B Biant L McNicholas M Tawy G
Full Access

Abstract. Objectives. Little is known about the impact of cartilage defects on knee joint biomechanics. This investigation aimed to determine the gait characteristics of patients with symptomatic articular cartilage lesions of the knee. Methods. Gait analyses were performed at the Regional North-West Joint Preservation Centre. Anthropometric measurements were obtained, then 16 retroreflective markers representing the Plug-in-Gait biomechanical model were placed on pre-defined anatomical landmarks. Participants walked for two minutes at a self-selected speed on a treadmill on a level surface, then for 2 minutes downhill. A 15-camera motion-capture system recorded the data. Knee kinematics were exported into Matlab to calculate the average kinematics and spatiotemporal parameters per patient across 20 gait cycles. Depending on the normality of the data, paired t-tests or Wilcoxon ranked tests were performed to compare both knees (α = 0.05). Results. 20 patients participated; one of whom has bilateral cartilage defects. All 20 data sets were analysed for level walking; 18 were analysed for downhill walking. On a level surface, patients walked at an average speed of 3.1±0.8km/h with a cadence of 65.5±15.3 steps/minute. Patients also exhibited equal step lengths (0.470±0.072m vs 0.471±0.070m: p=0.806). Downhill, the average walking speed was 2.85±0.5km/h with a cadence of 78.8±23.1 steps/minute and step lengths were comparable (0.416±0.09m vs 0.420±0.079m: p=0.498). During level walking, maximum flexion achieved during swing did not differ between knees (54.3±8.6° vs 55.5±11.0°:p=0.549). Neither did maximal extension achieved at heel strike (3.1±5.7° vs 5.4±4.7°:p=0.135). On average, both knees remained in adduction throughout the gait cycle, with the degree of adduction greater in flexion in the operative knee. However, differences in maximal adduction were not significant (22.4±12.4° vs 18.7±11.0°:p=0.307). Maximal internal-external rotation patterns were comparable in stance (0.9±7.7° vs 3.5±9.8°: p=0.322) and swing (7.7±10.9° vs 9.8±8.3°:p=0.384). During downhill walking, maximum flexion also did not differ between operative and contralateral knees (55.38±10.6° vs 55.12±11.5°:p=0.862), nor did maximum extension at heel strike (1.32±6.5° vs 2.73±4.5°:p=0.292). No significant difference was found between maximum adduction of both knees (15.87±11.0° vs 16.78±12.0°:p=0.767). In stance, differences in maximum internal-external rotation between knees were not significant (5.39±10.7° vs 6.10±11.8°:p=0.836), nor were they significant in swing (7.69±13.3° vs 7.54±8.81°:p=0.963). Conclusions. Knee kinematics during level and downhill walking were symmetrical in patients with a cartilage defect of the knee, but an increased adduction during flexion in the operative knee may lead to pathological loading across the medial compartment of the knee during high flexion activities. Future work will investigate this further and compare the data to a healthy young population. We will also objectively assess the functional outcome of this joint preservation surgery to monitor its success. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_5 | Pages 10 - 10
13 Mar 2023
Rankin C Coleman S Robinson P Murray I Clement N
Full Access

We aim to determine the differences in lower limb joint kinematics during the golf swing of patients who had undergone Total Knee Arthroplasty (TKA) and a control group of native knee golfers. A case-control study was undertaken with ten golfers who had undergone TKA (cruciate retaining single radius implant) and five age and matched golfers with native knees. Each golfer performed five swings with a driver whilst being recorded at 200Hz by a ten-camera motion capture system. Knee and hip three-dimensional joint angles (JA) and joint angular velocities (JAV) were calculated and statistically compared between the groups at six swing events. The only significant differences in knee joint kinematics between TKA and control groups was a lower external rotation JA in the left knee during the backswing (p=0.010). There was no significant difference in knee JAV between the groups. Both hips demonstrated significantly (p=0.023 for left and p=0.037 for right) lower flexion in the TKA group during the takeaway swing event, and there was lower internal rotation in the backswing and greater external rotation in the downswing of the right hip. There was also slower left hip extension JAV in the downswing. Normal knee kinematics were observed during the golf swing following TKA, with the exception of reduced external rotation in the left knee during the back swing and the right during the down swing. The differences demonstrated in the hip motion indicate that they may make compensatory movements to adjust to the reduced external rotation demonstrated in the knee


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 8 - 8
11 Apr 2023
Piet J Vancleef S Mielke F Van Nuffel M Orozco G Korhonen R Lories R Aerts P Van Wassenbergh S Jonkers I
Full Access

Altered mechanical loading is a widely suggested, but poorly understood potential cause of cartilage degeneration in osteoarthritis. In rodents, osteoarthritis is induced following destabilization of the medial meniscus (DMM). This study estimates knee kinematics and contact forces in rats with DMM to gain better insight into the specific mechanisms underlying disease development in this widely-used model. Unilateral knee surgery was performed in adult male Sprague-Dawley rats (n=5 with DMM, n=5 with sham surgery). Radio-opaque beads were implanted on their femur and tibia. 8 weeks following knee surgery, rat gait was recorded using the 3D²YMOX setup (Sanctorum et al. 2019, simultaneous acquisition of biplanar XRay videos and ground reaction forces). 10 trials (1 per rat) were calibrated and processed in XMALab (Knörlein et al. 2016). Hindlimb bony landmarks were labeled on the XRay videos using transfer learning (Deeplabcut, Mathis et al. 2019; Laurence-Chasen et al. 2020). A generic OpenSim musculoskeletal model of the rat hindlimb (Johnson et al. 2008) was adapted to include a 3-degree-of-freedom knee. Inverse kinematics, inverse dynamics, static optimization of muscle forces, and joint reaction analysis were performed. In rats with DMM, knee adduction was lower compared to sham surgery. Ground reaction forces were less variable with DMM, resulting in less variability in joint external moments. The mediolateral ground reaction force was lower, resulting in lower hip adduction moment, thus less force was produced by the rectus femoris. Rats with DMM tended to break rather than propel, resulting in lower hip flexion moment, thus less force was produced by the semimembranosus. These results are consistent with lower knee contact forces in the anteroposterior and axial directions. These preliminary data indicate no overloading of the knee joint in rats with DMM, compared with sham surgery. We are currently expanding our workflow to finite element analysis, to examine mechanical cues in the cartilage of these rats (Fig1G)


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 1 - 1
1 Nov 2021
Fu FH
Full Access

The Anterior Cruciate Ligament (ACL) plays a vital role in maintaining function and stability in the knee. Over the last several decades, much research has been focused on elucidating the anatomy, structural properties, biomechanics, pathology, and optimal treatments for the ACL. Through careful and objective study, the ACL can be understood to be a dynamic structure, rich in neurovascular supply. Although it is referred to as one ligament, it is comprised of two dis-tinct bundles which function synergistically to facilitate normal knee kinematics. The bony morphology of the knee defines normal knee kinematics, as well as the nature of the soft-tissue structures about the knee. Characterized by individual uniqueness, bony morphology varies from patient to patient. The ACL, which is a reflection of each patient's unique bony morphol-ogy, is inherently subject to both anatomic and morphologic variation as well. Furthermore, the ACL is subject to physiologic aging, which can affect the anatomic and structural properties of the ligament over time. A successful anatomic ACL Reconstruction, which may be considered the functional restoration of the ACL to its native dimensions, collagen orientation, and inser-tion sites according to individual anatomy, considers all these principles. It is vital to respect the nature we observe, rather than to “create” nature to fit a one-size-fits-all surgery. Double bundle ACL Reconstruction may therefore be thought of more as a concept rather than a specific technique, one that respects the individual unique anatomy of each patient to provide a truly indi-vidualized, anatomic, and value-based ACL Reconstruction