Aims. The preventive effects of bisphosphonates on articular cartilage in non-arthritic joints are unclear. This study aimed to investigate the effects of oral bisphosphonates on the rate of joint space narrowing in the non-arthritic hip. Methods. We retrospectively reviewed standing whole-leg radiographs from patients who underwent knee arthroplasties from 2012 to 2020 at our institute. Patients with previous hip surgery, Kellgren–Lawrence grade ≥ II hip osteoarthritis, hip dysplasia, or rheumatoid arthritis were excluded. The rate of hip joint space narrowing was measured in 398 patients (796 hips), and the effects of the use of bisphosphonates were examined using the multivariate regression model and the propensity score matching (1:2) model. Results. A total of 45 of 398 (11.3%) eligible patients were taking an oral bisphosphonate at the time of knee surgery, with a mean age of 75.8 years (SD 6.2) in bisphosphonate users and 75.7 years (SD 6.8) in non-users. The mean joint space narrowing rate was 0.04 mm/year (SD 0.11) in bisphosphonate users and 0.12 mm/year (SD 0.25) in non-users (p < 0.001). In the multivariate model, age (standardized coefficient = 0.0867, p = 0.016) and the use of a bisphosphonate (standardized coefficient = −0.182, p < 0.001) were associated with the joint space narrowing rate. After successfully matching 43 bisphosphonate users and 86 non-users, the joint narrowing rate was smaller in bisphosphonate users (p < 0.001). Conclusion. The use of bisphosphonates is associated with decreased
Purpose: Section of the anterior cruciate ligament (ACL) is classically used to induce experimental
Purpose: Arthroscopic tenotomy of the long head of the biceps brachial is indicated for pain relief in the treatment of unrepairable tears of the rotator cuff. The purpose of our study was to evaluate clinical and radiological outcome. Material and methods: This retrospective study included 38 patients (21 women and 17 men) mean age 65 years (44–78) who presented rotator cuff tears that could not be repaired by suture. These patients underwent arthroscopic tenotomy associated with acromioplasty in eight cases. Preoperative imaging included arthroscan and standard radiograms to assess retraction of the supraspinatus stump and fatty degeneration. The clinical outcome was assessed with the Constant score and search for loss of biceps force (estimated in comparision of an age- and gender-matched cohort). Modifications of the subarcomial height and the stage of
Aims. The epiphyseal approach to a chondroblastoma of the intercondylar notch of a child’s distal femur does not provide adequate exposure, thereby necessitating the removal of a substantial amount of unaffected bone to expose the lesion. In this study, we compared the functional outcomes, local recurrence, and surgical complications of treating a chondroblastoma of the distal femoral epiphysis by either an intercondylar or an epiphyseal approach. Methods. A total of 30 children with a chondroblastoma of the distal femur who had been treated by intraregional curettage and bone grafting were retrospectively reviewed. An intercondylar approach was used in 16 patients (group A) and an epiphyseal approach in 14 (group B). Limb function was assessed using the Musculoskeletal Tumor Society (MSTS) scoring system and Sailhan’s functional criteria. Results. At final follow-up, the mean MSTS score was 29.1 (SD 0.9) in group A and 26.7 (SD 1.5) in group B (p = 0.006). According to Sailhan’s criteria, the knee function was good and fair in 14 (87.5%) and two (12.5%) patients of group A, and eight (57.1%) and six (42.9%) patients of group B, respectively (p = 0.062). The lesion had recurred in one patient (6.2%) in group A and four patients (28.6%) in group B. Limb shortening > 1 cm was recorded in one patient (6.2%) from group A and six patients (42.8%) from group B.
Aims. cAMP response element binding protein (CREB1) is involved in the progression of osteoarthritis (OA). However, available findings about the role of CREB1 in OA are inconsistent. 666-15 is a potent and selective CREB1 inhibitor, but its role in OA is unclear. This study aimed to investigate the precise role of CREB1 in OA, and whether 666-15 exerts an anti-OA effect. Methods. CREB1 activity and expression of a disintegrin and metalloproteinase with thrombospondin motifs 4 (ADAMTS4) in cells and tissues were measured by immunoblotting and immunohistochemical (IHC) staining. The effect of 666-15 on chondrocyte viability and apoptosis was examined by cell counting kit-8 (CCK-8) assay, JC-10, and terminal deoxynucleotidyl transferase-mediated dUTP nick end-labelling (TUNEL) staining. The effect of 666-15 on the microstructure of subchondral bone, and the synthesis and catabolism of cartilage, in anterior cruciate ligament transection mice were detected by micro-CT, safranin O and fast green (S/F), immunohistochemical staining, and enzyme-linked immunosorbent assay (ELISA). Results. CREB1 was hyperactive in osteoarthritic articular cartilage, interleukin (IL)-1β-treated cartilage explants, and IL-1β- or carbonyl cyanide 3-chlorophenylhydrazone (CCCP)-treated chondrocytes. 666-15 enhanced cell viability of OA-like chondrocytes and alleviated IL-1β- or CCCP-induced chondrocyte injury through inhibition of mitochondrial dysfunction-associated apoptosis. Moreover, inhibition of CREB1 by 666-15 suppressed expression of ADAMTS4. Additionally, 666-15 alleviated
Introduction. Transfemoral osseointegration (TFOI) for amputees has substantial literature proving superior quality of life and mobility versus a socketed prosthesis. Some amputees have hip arthritis that would be relieved by a total hip replacement (THR). No other group has reported performing a THR in association with TFOI (THR+TFOI). We report the outcomes of eight patients who had THR+TFOI, followed for an average 5.2 years. Materials & Methods. Our osseointegration registry was retrospectively reviewed to identify all patients who had TFOI and also had THR, performed at least two years prior. Six patients had TFOI then THR, one simultaneous, one THR then TFOI. All constructs were in continuity from hip to prosthetic limb. Outcomes were: complications prompting surgical intervention, and changes in subjective hip pain, K-level, daily prosthesis wear hours, Questionnaire for Persons with a Transfemoral Amputation (QTFA), and Short Form 36 (SF36). All patients had clinical follow-up, but one patient did not have complete mobility and quality of life survey data at both time periods. Results. Four (50%) were male, average age 52.7±14.8 years. Three patients (38%) had amputation for trauma, three for osteosarcoma, one each (13%) infected total knee and persistent infection after deformity surgery. One patient died one year after THR+TOFA from subsequently diagnosed pancreatic cancer. One patient had superficial debridement for infection with implant retention after five years. No implants were removed, no fractures occurred. All patients reported severe hip pain preoperatively versus full relief of hip pain afterwards. K-level improved from 0/8=0% K>2 (six were wheelchair-bound) to 5/8=63% (p=.026). At least 8 hours of prosthesis wear was reported by 2/7=29% before TOFA vs 5/7=71% after (p=.286). The QTFA improved in all categories, but not significantly: Global (40.0±21.6 vs 60.0±10.9, p=.136), Problem (50.2±33.2 vs 15.4±8.4, p=.079), and Mobility (35.9±26.8 vs 58.3±30.7, p=.150). The SF36 also improved minimally and not significantly: Mental (53.6±12.0 vs 54.7±4.6, p=.849) and Physical (32.5±10.9 vs 36.3±11.2, p=.634). Conclusions. THR+TFOI is a successful reconstruction option for amputees who desire relief from severe pain related to hip
Aims. The ulna is an extremely rare location for primary bone tumours of the elbow in paediatrics. Although several reconstruction options are available, the optimal reconstruction method is still unknown due to the rarity of proximal ulna tumours. In this study, we report the outcomes of osteoarticular ulna allograft for the reconstruction of proximal ulna tumours. Methods. Medical profiles of 13 patients, who between March 2004 and November 2021 underwent osteoarticular ulna allograft reconstruction after the resection of the proximal ulna tumour, were retrospectively reviewed. The outcomes were measured clinically by the assessment of elbow range of motion (ROM), stability, and function, and radiologically by the assessment of allograft-host junction union, recurrence, and
Syndesmotic ankle lesions involve disruption of the osseous tibiofibular mortise configuration as well as ligamentous structures stabilizing the ankle joint. Incomplete diagnosis and maltreatment of these injuries is frequent, resulting in chronic pain and progressive instability thus promoting development of ankle osteoarthritis in the long term. Although the pathogenesis is not fully understood, abnormal mechanics has been implicated as a principal determinant of ankle
Stimulation of the mechanosensitive ion channel, Piezo1 promotes bone anabolism and SNPs in the Piezo1 locus are associated with changes in fracture risk. Osteocytes function as critical regulators of bone homeostasis by sensing mechanical signals. The current study used a human, cell-based physiological, 3D in vitro model of bone to determine whether loading of osteocytes in vitro results in upregulation of the Piezo1 pathway. Human Y201 MSCs, embedded in type I collagen gels and differentiated to osteocytes for 7-days, were subjected to pathophysiological load (5000 µstrain, 10Hz, 5 mins; n=6) with unloaded cells as controls (n=4). RNA was extracted 1-hr post load and assessed by RNAseq analysis. To mimic mechanical load and activate Piezo1, cells were differentiated to osteocytes for 13 days and treated ± Yoda1 (5µM, 2- and 24-hs, n=4); vehicle treated cells served as controls (n=4). RNA was subjected to RT-qPCR and data normalised to the housekeeping gene, YWHAZ. Media was analysed for IL6 release by ELISA. Mechanical load upregulated Piezo1 gene expression (16.5-fold, p<0.001) and expression of the transcription factor NFATc1, and matricellular protein CYR61, known regulators of Piezo1 mechanotransduction (3-fold; p= 5.0E-5 and 6.8-fold; p= 6.0E-5, respectively). After 2-hrs, Yoda1 increased the expression of the early mechanical response gene, cFOS (11-fold; p=0.021), mean Piezo1 expression (2.3-fold) and IL-6 expression (103-fold, p<0.001). Yoda1 increased the release of IL6 protein after 24 hours (7.5-fold, p=0.001). This study confirms Piezo1 as an important mechanosensor in osteocytes. Piezo1 activation mediated an increase in IL6, a cytokine that drives inflammation and bone resorption providing a direct link between mechanical activation of Piezo1, bone remodeling and inflammation, which may contribute to mechanically induced
Aim. Prosthetic joint replacement is more commonly done in the elderly group of patients due to an increase pathology related to
Introduction. Osteogenesis imperfect (OI) is a geno- and phenotypically heterogeneous group of congenital collagen disorders characterized by fragility and microfractures resulting in long bone deformities. OI can lead to progressive femoral coxa vara from bone and muscular imbalance and continuous microfracture about the proximal femur. If left untreated, patients develop Trendelenburg gait, leg length discrepancy, further stress fracture and acute fracture at the apex of the deformity, impingement and hip
Introduction. Angular deformity in the lower extremities can result in pain, gait disturbance, deformity and
Aims. Cam and pincer morphologies are potential precursors to hip osteoarthritis and important contributors to non-arthritic hip pain. However, only some hips with these pathomorphologies develop symptoms and
Abstract. Cranial cruciate ligament (CrCL) disease/rupture causes pain and osteoarthritis (OA) in dogs. α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA)-2 and kainate (KA)-1 glutamate receptors (GluR) and the excitatory amino acid transporter-1 (EAAT-1) and EAAT-3 are expressed in joint tissues from OA patients and rodent arthritis models and represent potential therapeutic targets. Objectives. To evaluate glutamate signalling in canine diseased and normal CrCL and meniscus by immunohistochemistry (IHC). Methods. Surgical waste (CrCL, n=5 and medial meniscus, n=3) were obtained from canines with CrCL disease (RCVS ethics approval:2017/14/Alves) and normal analogous tissues (n=2). IHC optimization was performed for rabbit polyclonal (AMPA-2:ab52176, KA-1:ab67402, EAAT-1:ab416) and monoclonal (EAAT-3:ab124802) antibodies from Abcam. IHC was optimised over antibody dilutions from 1:100 to 1:5000 alongside equivalent IgG isotype controls (ab37415 and ab172730) and negative controls (TBS/Tween buffer without primary antibodies). IHC staining was compared in diseased and normal tissues and disclosed with 3,3’-Diaminobenzidine (DAB). Results. Specific immunostaining was observed for all primary antibodies, at concentrations between 2.0×10. −4. mg/mL to 1.0×10. −2. mg/mL, depending on the tissue and primary antibody. All GluR and transporters were expressed in the cellular membrane, in the normal and diseased CrCL and meniscus. Healthy CrCL showed a well-organized microstructure, with normal positively labelled ligamentocytes, whereas diseased CrCL microstructure was disrupted, with many positively stained fibroblastic cells in the epiligamentous region and evident neovascularization, indicative of ongoing repair. The normal and diseased meniscal tissues showed similar chondrocytes-like cells labelling and microstructure. Negative controls demonstrated no labelling. Conclusions. GluR and transporters expression is altered in canine diseased CrCLs, implicating glutamate signalling in this pathology. Since AMPA/KA GluR antagonists alleviate
Abstract. Objectives. Osteocytes function as critical regulators of bone homeostasis by sensing mechanical signals. Stimulation of the mechanosensitive ion channel, Piezo1 promotes bone anabolism and deletion of Piezo1 in osteoblasts and osteocytes decreases bone mass and bone strength in mice. This study determined whether loading of osteocytes in vitro results in upregulation of the Piezo1 pathway. Methods. Human MSC cells (Y201), embedded in type I collagen gels and differentiated to osteocytes in osteogenic media for 7-days, were subjected to pathophysiological load (5000 µstrain, 10Hz, 5 mins; n=6) with unloaded cells as controls (n=4). RNA was extracted 1-hr post load and Piezo1 activation assessed by RNAseq analysis (NovaSeq S1 flow cell 2 × 100bp PE reads). To mimic mechanical load and activate Piezo1, Y201s were differentiated to osteocytes in 3D gels for 13 days and treated, with Yoda1 (5µM, 2 hours, n=4); vehicle treated cells served as controls (n=4). Extracted RNA was subjected to RT-qPCR and data analysed by Minitab. Results. Low mRNA expression of PIEZO1 in unloaded cells was upregulated 5-fold following 1-hr of mechanical load (p=0.003). In addition, the transcription factor NFATc1, a known regulator of Piezo1 mechanotransduction, was also upregulated by load (2.4-fold; p=0.03). Y201 cells differentiated in gels expressed the osteocyte marker, SOST. Yoda1 upregulated PIEZO1 (1.7-fold; p=0.057), the early mechanical response gene, cFOS (4-fold; p=0.006), COL1A1 (3.9-fold; p=0.052), and IL-6 expression (7.7-fold; p=0.001). Discussion. This study reveals PIEZO1 as an important mechanosenser in osteocytes. Piezo 1 mediated increases in the bone matrix protein, type I collagen, and IL-6, a cytokine that drives inflammation and bone resorption. This provides a direct link between mechanical activation of Piezo 1, bone remodelling and inflammation, which may contribute to mechanically-induced
Background. The only existing classification of Müller-Weiss Disease (MWD), based solely on Méary's angle, serves neither as guide for prognosis nor treatment. This accounts for lack of gold standard in its management. Methods. Navicular compression, medial extrusion, Kite's angle and metatarsal lengths were measured on all radiographs of 95 feet with MWD. Joints involved, presence and location of navicular fracture were recorded. Results. We identified three distinct groups. Group 1 comprises 11 “early-onset” MWD feet, aged 9 to 29 years. These had the greatest compression and medial extrusion, and lowest Kite's angles. All except 1 were index minus and had a lateral navicular fracture. None has required surgery to date. Only 1 has moderate talonavicular
Aims. Knee osteonecrosis in advanced stages may lead to
Abstract. Objectives. Osteoarthritis (OA) is a painful and debilitating disorder of diarthroidal
Abstract. OBJECTIVES. Abnormal joint mechanics have been proposed as adversely affecting natural hip joint tribology, whereby increased stress on the articular cartilage from abnormal loading leads to
Abstract. OBJECTIVES. Although surgical periacetabular osteotomy (PAO) for hip dysplasia aims to optimise acetabular coverage and restore hip function, it is unclear how surgery affects capsular mechanics and joint stability. The purpose was to examine how the reoriented acetabular coverage affects capsular mechanics and joint stability in dysplastic hips. METHODS. Twelve cadaveric dysplastic hips (n = 12) were denuded to the capsule and mounted onto a robotic tester. The robot positioned each hip in multiple flexion angles (Extension, Neutral 0°, Flexion 30°, Flexion 60°, Flexion 90°) and performed internal-external rotations and abduction-adduction to 5 Nm in each rotational or planar direction. Each hip underwent a PAO, preserving the capsule, and was retested postoperatively in the robot. Paired sample t-tests compared the range of motion before and after PAO surgery (CI = 95%). RESULTS. Pre-operatively, the dysplastic hips demonstrated large ranges of internal-external rotations and abduction-adduction motions throughout all flexion positions. Post-operatively, the PAO slackenend the anterosuperior capsule and tightened the inferior capsule. This increased external rotation in Flexion 60° and Flexion 90° (∆. ER. = +16 and +23%) but provided lateral coverage to decrease internal rotation at Flexion 90° (∆. IR. = –15%). The PAO also reduced abduction throughout, but increased adduction in Neutral 0°, Flexion 30°, and Flexion 60° (∆. ADD. = +34, +30%, +29% respectively). CONCLUSIONS. The PAO provided crucial osseous structural coverage to the femoral head, decreasing hypermobility and adverse loading at extreme hip flexion-extension. However, it also slackened the anterosuperior capsule and increased adduction and external rotation, which may lead to ischiofemoral impingement and adductor irritations. Capsular instability may be secondary to acetabular undercoverage, thus capsular alteration may be warranted for larger corrections or rotational osteotomies. To preserve native hip and delay