Advertisement for orthosearch.org.uk
Results 1 - 10 of 10
Results per page:
Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 107 - 107
1 Sep 2012
Hadley M Hadfield F Hardaker C Isaac G Fisher J Wye J Barnett J
Full Access

Introduction. Hip wear simulation is a widely used technique for the pre-clinical evaluation of new bearing designs. However, wear rates seen in vitro can often be significantly different to those seen clinically. This can be attributed to the difference between the optimal conditions in a simulator and wide ranging conditions in real patients. This study aimed to develop more clinically relevant simulator tests, looking specifically at the effects of cup inclination angle (in vivo) and stop-dwell-start (SDS) protocols on a clinically available product. Method. Five tests using a Paul type walking cycle (ISO 14242) were carried out on two ProSim hip simulators: . 28mm MoM, standard walking, cup inclination 45°, (n = 5). 36mm MoM, standard walking, cup 45°, (n = 4). 36mm MOM, SDS: 10 walking cycles and pause of 5s with stance load of 1250N cup 45°, (n = 5). 36mm MOM, SDS: 10 walking cycles and pause of 30s with stance load of 1250N, (n = 5) cup 45°. 36mm MOM, standard walking, cup 55°(n = 5), and 65°(n = 5). All samples had matched clearances, measured using a CMM (Prismo Navigator, Zeiss, Germany). Wear was measured gravimetrically (Sartorius ME235S: 0.01mg). Results and Discussion. Metal-on-metal hip bearings are known to exhibit a bi-phasic wear pattern in-vitro (1), with the majority of wear occurring over the first 1–1.5mc, followed by lower steady state wear as the components conform to each other. Therefore bedding in wear over the first 1 million cycles was compared for each of the sample groups in this study. Bedding in wear for 36mm bearings under standard angle (45 inclination) and walking conditions was 0.16±0.15mm3/mc, while for 28mm bearings, wear was 2.67±2.06mm3/mc. Positioning the acetabular cup at an increased angle led to increased wear. At 55bedding in wear was .25±0.29mm3/mc, while at 65wear was 0.65±0.32mm3/mc. When SDS conditions were applied, no significant increase in wear was observed under either the 5s or 30s pause conditions, with bedding in wear of 0.19±0.31mm3/mc and 0.14±0.13mm3/mc respectively. Conclusion. This study illustrates the robust performance of the 36mm MoM bearing under extreme test conditions when compared with 28mm MoM. No effect was observed with the application of stop-dwell-start conditions, and only a small increase in wear was observed when the cup was inclined to a greater angle. Despite the application of extreme test conditions, the 36mm MoM still demonstrates lower wear than 28mm under all conditions. In all but the 65 inclination conditions, this difference is statistically significant. This study replicates some of the more frequently observed extreme conditions measured in real patients with THRs (2,3). Even under these more aggressive scenarios, wear of the 36mm bearing is still relatively low when compared with a commercially available 28mm THR


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 204 - 204
1 Sep 2012
Zietz C Fritsche A Mittelmeier W Bader R
Full Access

The prevalent cause of implant failure after total joint replacement is aseptic loosening caused by wear debris. Improvement of the wear behaviour of the articulating bearing between the cup and femoral head is essential for increased survival rate of artificial hip joints. Cross-linking of the polyethylene (PE) material is one attempt to reduce wear particle release at the articulating surface. Various cross-linked polyethylenes (X-PE) are used in orthopaedics since several years.

In total hip arthroplasty (THA) the use of larger femoral head sizes has specific reasons. Larger heads lead to a decreased risk of total hip dislocation and impingement as well as an improved range of motion in comparison to smaller head sizes like 28mm or less. However, the increasing diameter of femoral head can be associated with lower thickness of the PE liner and increased wear rate. Cross-linking of PE can improve the wear rate of the liner and hence supports the use of larger femoral heads. The aim of this experimental study was to evaluate the wear of standard vs. sequential X-PE (X3-PE) liner in combination with different ceramic femoral head sizes.

Wear testing was performed for 5 million load cycles using standard UHMW-PE liners (N2Vac) and X3-PE liners (each Stryker GmbH & Co. KG, Duisburg, Germany) combined with 28mm ceramic ball heads and the Trident PSL acetabular cup (Stryker). Furthermore, X3-PE liners with an internal diameter of 36mm and 44mm and decreased wall thickness (5.9mm and 3.8mm) were combined with corresponding ceramic heads. An eight station hip wear simulator according to ISO 14242 (EndoLab GmbH, Rosenheim, Germany) was used to carry out the standard wear tests. The tests were realised in temperature-controlled chambers at 37°C containing calf serum (protein content 20g/l).

The average gravimetrical wear rates of the standard UHMW-PE (N2Vac) liners combined with 28mm ceramic heads amounted to 12.6 ± 0.8mg/million cycles. Wear of X3-PE liners in combination with 28 mm ceramic heads was not detectable. The average gravimetrical wear rates of the X3-PE liners in combination with 36mm and 44mm ceramic heads amounted to 2.0 ± 0.5mg and 3.1 ± 0.3mg/million cycles, respectively.

The purpose of this study was to evaluate the effect of femoral head size at THA on standard and sequential X-PE liner. The wear simulator tests showed that the wear rate of PE liners with small heads (28mm) decreased by cross-linking of the PE significantly. The amount of wear at X-PE increased slightly with larger head size (36mm and 44mm). However, by sequential cross-linking, the wear rate using thinner liners and larger femoral heads is reduced to a fractional amount of wear at conventional UHMW-PE. Hence, the above-mentioned advantages of larger femoral head diameters can be realised by improved wear behaviour of sequential X-PE.


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_5 | Pages 8 - 8
1 May 2015
Noor S Gilson A Mulhern K Swanson A Mony K Vanny V Gollogly J
Full Access

Introduction:

The developing world often lacks the resources to effectively treat the most serious injuries, potentially resulting in severe complications of orthopaedic trauma, including osteomyelitis following open fractures or surgical fracture treatment. Antibiotic cement beads are now a widely accepted method of delivering antibiotics locally to the infected area following trauma. This study is based in Cambodia, a low income country struggling to recover from a recent genocide.

Aims:

This project studied the effectiveness of locally made antibiotic beads, analysing their effectiveness after being gas sterilised, packaged and kept in storage.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 206 - 206
1 Sep 2012
Zietz C Fritsche A Lange R Mittelmeier W Bader R
Full Access

Due to increased life expectancy of human population, the amount of total knee replacements (TKR) is expected to increase. TKR reached a high grade of quality and safety, but most often it fail because of aseptic implant loosening caused by polyethylene (PE) wear debris. Wear is generated at the articulating surfaces, e.g. caused by three body particles, like bone fragments or bone cement particles. The aim of this experimental study was to compare the wear of tibial PE inserts combined with metallic and ceramic femoral components at three body wear situation induced by polymethylmethacrylate (PMMA) and zirconia (ZrO2) particles from the bone cement.

Wear testing was performed for 5 Mio load cycles, using tibial standard PE inserts combined with the same CR femoral component, in two different materials, Cobalt Chromium (CoCrMo) and Biolox delta ® ceramic (Multigen Plus Knee System, Lima Corporate, Italy). A knee wear simulator, according to ISO 14243 (EndoLab GmbH, Rosenheim, Germany), was used to carry out the tests. The tests were performed in temperature-controlled test chambers at 37 °C, containing calf serum with a protein content of 30 g/l. Polymethylmethacrylate (PMMA) and zirconia (ZrO2) bone cement particles (Palacos R ®) were manufactured to a size of 30 μm. The three body particles were added at all stations onto the articulating surface of the tibial PE insert (7mg per condyle) at every 500,000 cycles. Wear was determined gravimetrically and the surfaces of tibial inserts were analysed by scanning electron microscope (SEM) after finishing the 5 million cycles. Furthermore, roughness of the PE insert surfaces and the articulating surfaces of the different femoral components were detected and the PE wear particles were analysed by SEM.

The average gravimetrical wear rates of the tibial PE inserts in combination with CoCr and Biolox delta ® ceramic femoral components amounted to 6.4 ± 0.9 mg and 2.6 ± 0.4 mg per million cycles, respectively. Beside bone cement particles on the articulating surface of the PE inserts, polished surfaces and scratches were detected by SEM. In comparison to the untreated surfaces of the PE inserts at both material pairings the surface roughness at the articulating areas showed deep scratches and polished regions. Analyses of the metallic femoral components showed scratches at the articulating surfaces, none on ceramics.

The present study pointed out the effect of femoral component material in an abrasive three body wear situation on the wear properties of TKR. The wear simulator tests showed that wear of PE inserts under three body wear conditions, in combination with ceramic femoral components, was significantly lower than with metallic femoral components. With regard to anti-allergic properties, ceramic femoral components are promising products for TKR.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_3 | Pages 2 - 2
1 Feb 2020
Shields D Llopis-Hernandez V Jayawarna V Gonzales-Garcia C Marshall W Dalby M Salmeron-Sanchez M
Full Access

Osteoinductive bone substitutes are in their developmental infancy and a paucity of effective grafts options persists despite clinical demand. Bone mineral substitutes such as hydroxyapatite cause minimal biological activity when compared to osteoinductive systems present biological growth factors in order to drive bone regeneration. We have previously demonstrated the in-vitro efficacy of a bioengineered system at presenting growth factors at ultra low-doses. This study aimed to translate this growth factor delivery system towards a clinically applicable implant. Osteoinductive surfaces were engineered using plasma polymerisation of poly(ethyl acrylate) onto base materials followed by adsorption of fibronectin protein and subsequently growth factor (BMP-2). Biological activity following ethylene oxide (EO) sterilisation was evaluated using ELISAs targeted against BMP-2, cell differentiation studies and atomic force microscopy. Scaffolds were 3D printed using polycaprolactone/hydroxyapatite composites and mechanically tested using a linear compression models to calculate stress/strain. In-vivo analysis was performed using a critical defect model in 23 mice over an 8 week period. Bone formation was assessed using microCT and histological analysis. Finally, a computer modelling process was developed to convert patient CT images into surface models, then formatted into 3D-printable scaffolds to fill critical defects. Following EO sterilisation, there was no change in scaffold surface and persistent availability of growth factors. Scaffolds showed adequate porosity for cell migration with mechanical stiffness similar to cancellous bone. Finally, the in vivo murine model demonstrated rapid bone formation with evidence of trabecular remodelling in samples presenting growth factors compared to controls


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 338 - 338
1 Sep 2012
Angibaud L Stulberg B Mabrey J Covall D Burstein A Steffens J Haider H
Full Access

Introduction. A tibial insert with choices in size, thickness, and posterior slope is proposed to improve ligament balancing in total knee arthroplasty. However, increasing posterior slope, or the angle between the distal and proximal insert surfaces, will redistribute ultra-high molecular weight polyethylene (UHMWPE) thickness in the sagittal plane, potentially affecting wear. This study used in-vitro testing to compare wear for a standard cruciate-retaining tibial insert (STD) and a corresponding 6° sloped insert (SLP), both manufactured from direct-compression molded (DCM) UHMWPE. Our hypothesis was slope variation would have no significant effect on wear. Methods. Two of each insert (STD and SLP) were tested on an Instron-Stanmore knee simulator with a force-control regime. The gait cycle and other settings followed ISO 14243-1 and -2, except for reference positions. The STD insert was tilted 6° more than the SLP insert to level the articular surfaces. Wear was gravimetrically measured at intervals according to strict protocol. Results. No statistical difference (p=0.36) in wear rates was found for the STD (9.5 ±1.8 mg/Mc)) and SLP (11.4 ±0.5 mg/Mc) inserts. Discussion. The overall wear rate measured was higher than previously published rates for implants similar to the STD inserts. This may result from increased shear loads due to the shift in reference position and 6° slope. This is the first time the effect of tibial insert slope on wear has been evaluated in-vitro. For inserts made from DCM UHMWPE with a slope limited to 6°, this test suggests altering tibial insert slope has an insignificant effect on wear


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 142 - 142
1 Sep 2012
Traynor A Simpson D Ellison P Collins S
Full Access

Introduction. Cobalt chrome on polyethylene remains a widely used bearing combination in total joint replacement. However wear induced osteolysis, bulk material property degradation of highly cross-linked polyethylene (HXLPE) [1], and oxidation after implantation (thought to be as a result of lipid absorption or cyclic loading [2]) remains a concern. ECIMA is a cold-irradiated, mechanically annealed, vitamin E blended next generation HXLPE developed to maintain mechanical properties, minimise wear and to improve the oxidation resistance in the long-term. The aim of this study was to compare the in-vitro wear rate and mechanical properties of three different acetabular liners; conventional UHMWPE, HXLPE and ECIMA. Methods. Twelve liners (Corin, UK) underwent a 3 million cycle (mc) hip simulation. Three conventional UHMWPE liners (GUR1050, Ø32 mm, 30 kGy sterilised in Nitrogen), three HXLPE liners (GUR1020, Ø40 mm, 75 kGy cross-linking and EtO sterilised) and six ECIMA liners (0.1 wt% vitamin E GUR1020, Ø40 mm, 120 kGy cross-linking, mechanically deformed and annealed, and EtO sterilised) articulated against CoCrMo alloy femoral heads to ASTM F75 (Corin, UK). Wear testing was performed in accordance with ISO 14242 parts 1 and 2, with a maximum force of 3.0 kN and at a frequency of 1 Hz. The test lubricant used was calf serum with a protein content of 30 g/l and 1% (v/v) patricin added as an antibacterial agent. Volumetric wear rate was determined gravimetrically after the first 0.5 mc and every 1 mc thereafter. ASTM D638 type V specimens (3.2 mm thick) were machined from ECIMA material for uniaxial tension testing to ASTM D638. Ultimate tensile strength (UTS), yield strength and elongation values were measured. These values were compared to mechanical data available for the other material types. Results. There was a 94% and a 68% reduction in the wear rate for the ECIMA liners compared to the conventional UHMWPE and HXLPE liners respectively. There was an increase in UTS, yield strength and elongation of 11%, 11% and 15% respectively, for ECIMA compared to HXLPE. Discussion. The wear results reported in this study indicate that ECIMA is a very low wearing material which has the potential to reduce wear related osteolysis in-vivo. Importantly, the mechanical properties were generally maintained unlike the degradation found in many modified polyethylene materials and were more comparable to conventional UHMWPE than HXLPE. The reduced wear rate during in-vitro hip simulation of ECIMA compared to conventional UHMWPE, coupled with improved mechanical properties in comparison to HXLPE, makes ECIMA a promising next generation, advanced bearing material


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XV | Pages 2 - 2
1 Apr 2012
Reston SC McDonald DA Seigmeth R Deakin AH Scott NB Kinninmonth AWG
Full Access

The CALEDonian Technique™, promoting enhanced recovery after surgery, is a multimodal multidisciplinary technique. This has demonstrated excellent analgesic control allowing early mobilisation and discharge following TKA, whilst maintaining patient safety. All patients follow a planned programme beginning with pre-operative out-patient education at the pre-assessment visit. An anaesthetic regimen consisting of pre-emptive analgesia is combined with a spinal/epidural with propofol sedation. Intra-articular local anaesthetic soft tissue wound infiltration by the surgeon under direct vision is supplemented by post-operative high volume intermittent boluses via an intra-articular catheter. Early active mobilisation is positively encouraged. A prospective audit of over 1000 patients demonstrated 35% of patients mobilised on day 0 and 95% by day 1, with rescue analgesia required in only 5% of cases. 79% of patients experienced no nausea or vomiting helping reduce length of stay from six to four postoperative days. A catheterisation rate of 7%, a DVT rate of 0.6% and a PE rate of 0.5% remained within or below previously published levels. Laboratory studies examining the performance of the epidural filter and injection technique used for the post-operative intra-articular injections demonstrated this to be robust and effective at preventing bacterial ingress. This in-vitro data is supported by clinical results demonstrating no increase in the deep infection rate of 0.7% since the implementation of the technique at our institution. We conclude that the CALEDonian Technique™ effectively and safely improves patient post-operative recovery following TKA


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 241 - 241
1 Sep 2012
Field R Rajakulendran K Rushton N
Full Access

Introduction. The MITCH PCR is an anatomic, flexible, horse-shoe shaped acetabular component, with 2 polar fins. The rationale of the PCR cup design is to reproduce a near-physiological stress distribution in the bone adjacent to the prosthesis. The thin composite cup is designed to fuse and flex in harmony with the surrounding bony structure. Only the pathological acetabular cartilage and underlying subchondral bone of the horseshoe-shaped, load-bearing portion of the acetabular socket is replaced, thus preserving viable bone stock. The PCR is manufactured from injection moulded carbon fibre reinforced polyetheretherketone (PEEK), with a two layer outer surface comprising hydroxyapatite and plasma sprayed commercially pure titanium. It is implanted in conjunction with a large diameter low wear femoral head, producing a bearing that will generate minimal wear debris with relatively inert particles. Pre-clinical mechanical testing, finite element analysis and biocompatibility studies have been undertaken. FEA evaluation predicts preservation of host bone density in the load bearing segments. A pilot clinical study was completed on a proto-type version of the PCR cup (the “Cambridge” cup), achieving excellent 5 and 10 year results. Subjects and Methods. We report the three-year results from a two-centre, prospective clinical evaluation study of the MITCH PCR cup. Patient outcome has been assessed using standardised clinical and radiological examinations and validated questionnaires. The change in physical level of activity and quality of life has been assessed using the Oxford Hip Score, Harris Hip score and the EuroQol-5D score, at scheduled time-points. Serial radiographs have been analysed to monitor the fixation and stability of the components. Results and Conclusions. In total 25 PCR cups were implanted by 3 surgeons. There were 12 men and 13 women. The mean patient age at time of surgery was 67 years (range 57–74). An Accolade TMZF stem was used as the femoral component in 19 patients and an Exeter stem in 6. The mean Oxford Hip score improved from 19.8 pre-operatively to 45 at the latest follow-up. The mean Euroqol-5D score improved from 62.6 to 83.6 and the Harris Hip score improved from 49.9 to 90.6. Three adverse events were noted in 2 patients (2 chest infections and 1 deep vein thrombosis). One revision of the acetabular component was performed at 21 months for squeaking. This has been investigated and modification of the articular geometry has resolved the problem on in-vitro testing


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 316 - 316
1 Sep 2012
Pandorf T Preuss R Flohr M Upmann C
Full Access

Introduction. In knee arthroplasty a ceramic component has several advantages: first, there is no ion release implying a risk for potential allergies. Second, the hardness of the material leads to a scratch resistance which ultimately reduces PE wear over time. In the past, ceramic components in knee applications were limited in the variety of design possibilities due to necessary thickness of the component resulting from the associated fracture risk of ceramics. By the development of an alumina matrix composite material with increased mechanical properties it is possible to develop ceramic knee components which have nearly the same design as a metal component and use the same implantation technique as well as the same instruments. This offers the surgeon the opportunity to choose intraoperatively between metal or ceramic knee components. Extensive in-vitro testing shows that ceramic knee components achieve superior mechanical test results. The reliability of the components is proven by two different burst tests and a fatigue test for both a femoral and a tibial ceramic knee component. Material and method. The mechanical proof-test was developed by subsequent steps of numerical load/stress analysis and design of an adequate mechanical test equipment. The procedure was organized as follows:. Oncologic: Analysis of relevant maximum in-vivo loading conditions. Analysis of the “boundary conditions”. Finite Element analysis: Identifying regions of highest stress concentration. Design analysis and accommodation if necessary. Development of an adequate mechanical test equipment which produces stresses comparable to the in-vivo conditions. Performing mechanical tests with ceramic femoral components. Validation of the test concept: comparison of test results and stress analysis. Assign “safety margin”,. Establish “proof test”. Results. Two independent load scenarios have been determined for each type of components as being in-vivo relevant. Hence, the developed proof-test consists of two subsequent load tests, the so-called regular test and the tension test for the femoral components, and the upper side test and the lower side test for the tibial components. In the regular test, the mechanical strength of the polished outer condyles is tested using a force which is equivalent to an in-vivo loading of 16 times bodyweight. In the tension test, the interior sides of the condyles are stressed in the sagittal plane ensuring a mechanically reliable implantation. This test is performed with a force equivalent to 10 times bodyweight. Discussion. The procedure to determine the proof loads using the maximum in-vivo loads together with a safety factor ensures the mechanical safety of the ceramic knee component. Together with the well-known excellent wear and biological behaviour of ceramics, this application provides an alternative to common metallic knee components. Clinical observations in the framework of a multi-centre study in different European countries have been started and show very promising results