Advertisement for orthosearch.org.uk
Results 1 - 7 of 7
Results per page:
Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_16 | Pages 76 - 76
19 Aug 2024
Cook SD Patron LP Salkeld SL Nolan LP Lavernia CJ
Full Access

Dislocation after total hip replacement (THR) is a devastating complication. Risk factors include patient and surgical factors. Mitigation of this complication has proven partially effective. This study investigated a new innovating technique to decrease this problem using rare earth magnets. Computer simulations with design and magnetic finite element analysis software were used to analyze and quantitate the forces around hip implants with embedded magnets into the components during hip range of motion. N52 Neodymium-Iron-Boron rare earth magnets were sized to fit within the existing acetabular shells and the taper of a hip system. Additionally, magnets placed within the existing screw holes were studied. A 50mm titanium acetabular shell and a 36mm ceramic liner utilizing a taper sleeve adapter were modeled which allowed for the use of a 12mm × 5mm magnet placed in the center hole, an 18mm × 15mm magnet within the femoral head, and 10mm × 5mm magnets in the screw holes. Biomechanical testing was also performed using in-vitro bone and implant models to determine retention forces through a range of hip motion. The novel system incorporating magnets generated retentive forces between the acetabular cup and femoral head of between 10 to 20 N through a range of hip motion. Retentive forces were stronger at the extreme position hip range of motion when additional magnets were placed in the acetabular screw holes. Greater retentive forces can be obtained with specially designed femoral head bores and acetabular shells specifically designed to incorporate larger magnets. Mechanical testing validated the loads obtained and demonstrated the feasibility of the magnet system to provide joint stability and prevent dislocations. Rare earth magnets provide exceptional attractive strength and can be used to impart stability and prevent dislocation in THR without the complications and limitations of conventional methods


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_12 | Pages 59 - 59
1 Oct 2019
Sosa B Niu Y Turajane K Staats K Suhardi V Carli A Fischetti V Bostrom MPG Yang X
Full Access

Introduction. PJI is a devastating complication following total joint arthroplasty. In this study, we explore the efficacy of a bacteriophage-derived lysin, PlySs2, against in-vitro biofilm on titanium implant surfaces and in an acute in-vivo murine debridement antibiotic implant retention (DAIR) model of PJI. Methods. In-vitro: Xen 36 S. aureus biofilm was grown on Ti-6Al-4V mouse tibial implants for 1 day or 5 days and subsequently exposed to growth media, 1000× minimal inhibitory concentration (MIC) Vancomycin, or 5× MIC PlySs2. Implants were sonicated and analyzed for Colony Forming Units (CFU). In-vivo: A Ti-6Al-4V implant was inserted into the proximal tibia of C57BL/6J mice (n=21). All mice received 10. 4. CFU inoculation of Xen 36 S. aureus to the knee joint capsule and the infection was permitted 5 days to progress. On day 5 the mice were separated into three groups (n=7/group): (1) no further surgical intervention (control group), (2) irrigation and debridement (I&D) with saline, (3) I&D with 2mg/mL PlySs2. No implant-exchange was performed to mimic a debridement, antibiotic, and implant retention (DAIR) therapeutic strategy. All mice were sacrificed at day 10. Results. CFU counts for 1-day and 5-day in-vitro grown biofilm on implants demonstrate a >3log-fold reduction with PlySs2 compared to Vancomycin (p=0.01) with no significant difference between Vancomycin and control. In-vivo the addition of PlySs2 to Vancomycin treated mice reduces bacterial load in the periposthetic tissue and implant (p<0.05) with 5 days of treatment. Conclusion. PlySs2 5× MIC exhibits superior anti-microbial effect compared to Vancomycin on implants with 1-day and 5–5day biofilm maturities. The addition of PlySs2 to Vancomycin treatment of an acute established PJI further reduces tissue CFU and implants CFU. For any tables or figures, please contact the authors directly


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_6 | Pages 30 - 30
1 May 2019
Lamb J Baetz J Messer-Hannemann P Redmond A West R Morlock M Pandit H
Full Access

Background. Post-operative periprosthetic femoral fractures (PFF) are a devastating complication associated with high mortality and are costly. Few risk factors are modifiable apart from implant choice. The design features governing risk of PFF are unknown. We estimated the 90-day risk of revision for PFF associated with design features of cementless femoral stems and to investigate the effect of a collar on early PFF risk using a biomechanical in-vitro model. Patients, materials and methods. 337 647 primary THAs from the National Joint Registry (UK) were included in a multivariable survival and regression analysis to identify the adjusted hazard of PFF revision following primary THA using cementless stems. The effect of a collar in cementless THA on early PFF was evaluated in an in-vitro model using paired fresh frozen cadaveric femora. Results. Prevalence of PFF revision was 0.34% (1180/337647) and 44.0% occurred (520/1180) within 90 days of surgery. Implant risk factors included: collarless stem, non grit-blasted finish and triple tapered design. In the in-vitro PFF model a medial calcar collar consistently improved construct stability and fracture resistance. Discussion. During rotational injury the collar can load the calcar in compression increasing the force required for a fracture. This increases the force required to cause a PFF around a collared implant versus collarless implants. The calcar possibly acts as a check-rein which prevents excessive peri-prosthetic trabecular deformation in rotational injuries and may improve the resistance to loosening after high energy injuries which do not cause cortical fracture. Conclusion. Analysis of stem design features in registry data is a useful method to identify implant characteristics which affect the risk of early PFF around cementless femoral stems. Calcar collar reduced early PFF risk and this was confirmed by biomechanical testing. This approach may be useful in the analysis of other uncommon arthroplasty failure modes


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_5 | Pages 15 - 15
1 Jul 2020
Holleyman R Critchley R Jameson S Mason J Reed M Malviya A
Full Access

Prosthetic joint infections (PJI) are a devastating consequence in total hip arthroplasties (THA) with both significant morbidity and sometimes mortality, posing a significant health economic burden. Studies, both clinical and in-vitro have suggested possible reduction in PJI with the use of ceramic bearings. We have investigated the relationship of ceramic-on-ceramic (CoC), ceramic-on-polyethylene (CoP) or metal-on-polyethylene (MoP) bearing surface in affecting outcome of revision surgery after primary THA using data collected from National Joint Registry for England and Wales, Northern Ireland and the Isle of Man between 2002 and 2016. We used a competing risk regression model to investigate predictors of each revision outcome, such as infection, dislocation, aseptic revision and all cause revisions. The results were adjusted for age, gender, ASA grade, BMI, indication for surgery, intraoperative complications and implant data. We identified 456,457 THA (228,786 MoP, 128,403 CoC and 99,268 CoP). In a multivariable model, the adjusted risk of revision for PJI was lower with CoC (OR-0.748, p<0.001) and CoP (OR-0.775, p<0.001) when compared to MoP bearing. Additionally there was also a significant reduction in the risk of all cause revision for CoC (OR-0.918, p=0.002) and CoP (0.806, p<0.001), bearings as compared with MoP. The protective effect of ceramic bearing was predominantly seen after two years of implantation with a significant (p<0.0001) reduction of revision for PJI in both CoC (by 42.8%) and CoP (by 41.3%) group. Similarly significant effect was seen for aseptic revision beyond two years and overall all cause revision rate beyond two years reduced by 21.6% for CoC and 27.1% for CoP (p<0.001). Within the limits of registry analysis, this study has demonstrated an association between the use of ceramic bearing and lower rates of revision for all cause revisions especially infection and aseptic loosening. This finding supports the use of ceramic bearings in THA


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_11 | Pages 26 - 26
1 Aug 2018
Buttaro M Slullitel P Sánchez M Greco G McLoughlin S García-Ávila C Comba F Zanotti G Piccaluga F
Full Access

Although there is some clinical evidence of ceramic bearings being associated with a lower infection rate after total hip arthroplasty (THA), available data remains controversial since this surface is usually reserved for young, healthy patients. Therefore, we investigated the influence of five commonly-used biomaterials on the adhesion potential of four biofilm-producing bacteria usually detected in infected THAs. In this in-vitro research, we evaluated the ability of S. aureus, S. epidermidis ATCC 35984, E. coli ATCC 25922 and P. aeruginosa to adhere to the surface of solid biomaterials, including a 28mm cobalt-chromium metal head, a 28mm fourth-generation ceramic head, a 48mm fourth-generation ceramic insert, a 48mm highly-crossed linked polyethylene insert and a 52mm titanium porous-coated acetabular component. After an initial vortex step, a bacterial separation from the surface of each specimen was done until no remaining attached bacteria were observed by digital optical microscope. The colony-forming units were counted to determine the number of viable adherent bacteria and the bacterial density. We found no differences on global bacterial adhesion between the different surfaces. E. coli presented the least adherence potential among the analysed pathogens (p<0.001). The combination of E. coli and S. epidermidis generated an antagonist effect over the adherence potential of S. epidermidis individually (58±4% vs. 48±5%; p=0.007). The combination of P. aeruginosa and S. aureus presented a trend to an increased adherence of P. aeruginosa independently, suggesting an agonist effect (71% vs. 62%; p=0.07). In this study, ceramic bearings appeared not to be related to a lower bacterial adhesion than other biomaterials. However, different adhesive potentials among bacteria may play a major role on infection's inception


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_9 | Pages 40 - 40
1 May 2018
Del-Valle-Mojica J Alonso-Rasgado T Bailey C Jimenez-Cruz D Board T
Full Access

Introduction. The use of larger femoral heads in Total Hip Arthroplasty has increased in order to reduce the risk of dislocation and to improve the range of motion of the joint. In 2003, within the UK, the “standard” head size of 28mm was used in 73% of all hip procedures, whereas by 2012, this figure dropped to 36%. Concerns regarding the impact of this increment in head size on the cement and bone stresses have arisen; however, this has yet to be clearly determined. Methods. To understand the relationship between femoral head size and cement mantle and bone stress in cemented hip arthroplasty, 3D-Finite-Element models of a hemipelvis with cemented cup[tb6] (50mm outer-diameter) were developed. Loading conditions of single-leg-stance (average and overweight) were simulated for three head sizes (28, 32 and 36mm). The models were validated with an in-vitro experiment using the average loading condition. Results. Stresses were evaluated at the periacetabular bone and cement mantle. In the pelvic bone the peak von Mises stress value presented no change in magnitude due to change in head size for the average patient; for the overweight patient, there was a small increment. In the cement mantle, there was a noticeable difference in the pattern distribution and magnitude of the stresses for the two loading conditions[tb7]. For the average patient, average stresses in the cement were 1.7MPa, 1.8MPa and 1.9MPa for 28, 32 and 36mm heads, respectively; whereas for the overweight patient the stresses were 3.4MPa, 3.6MPa and 3.8MPa. Conclusions. Pelvic bone remained largely unaffected by the changes in femoral head size. The major effect of femoral head size occurs in the stress level and stress distribution pattern in the cement mantle. The current predicted cement stresses are below the cement endurance limit, this indicates that the cement fatigue life is not affected by the increasing head size


Bone & Joint 360
Vol. 4, Issue 5 | Pages 34 - 36
1 Oct 2015
Starkie R