Introduction. Geometric variations of the hip joint can give rise to abnormal joint loading causing increased stress on the articular cartilage, which may ultimately lead to degenerative joint disease.
Purpose. The management of moderate to large engaging Hill-Sachs lesions is controversial and surgical options include remplissage, allograft reconstruction, and partial resurfacing arthroplasty. Few
According to the Canadian Joint Replacement Registry, in 2010–2011 there were 17,303 hip replacements performed in Canada of which 10% were revisions. More than 73% of these revisions were for aseptic loosening, wear, and instability which suggests that hip biomechanics may be anomalous. The hip joint is often described as a ball-and-socket joint, which implies congruent interacting bony joint surfaces and purely rotational relative motion. This study challenges the accepted kinematic description by analysing detailed motion of the hip joint using surgical navigation technology. An
Introduction. The frequency of revision hip arthroplasty is increasing with the increasing life expectancy and number of individuals treated with joint replacement. Newer porous implants have been introduced which may provide better treatment options for revision arthroplasty. These may require cementation to other prosthesis components and occasionally to bone, however, there is currently no information on how these porous implants interface with cement. Materials and Methods. Cylindrical bone (control group) and porous metal probes with a diameter and height of 10mm were created and subsequently cemented in a standardized setting. These were placed under tensile and torsional loading scenarios. In this experimental study, 10 human femoral heads were used to create 20 cylindrical probes with a diameter and height of 10mm. One side was tapered to 6mm for cementation and interface evaluation. A further set of 20 probes of a porous metal implant (Trabecular Metal®) was created with the same geometry. After the probes were created and lavaged, they were cemented at the tapered surface using a medium viscosity cement at a constant cementation pressure (1.2N/mm2). The setup allowed for comparison of the porous metal/cement interface (group A) with the well-studied control group interface bone/cement (group B). The maximal interface stability of groups A and B were evaluated under tensile and rotational loading scenarios and the cement penetration was measured. Results. Group A showed a significantly decreased cement penetration under the same cementation pressure than group B, yet the interface showed a significantly more stable interface in the measured tests: larger maximum tensile force (effect size 2.7), superior maximum tensile strength (effect size 2.6), greater maximum torsional force (effect size 2.2), and higher rotational stiffness (effect size 1.5). Discussion and Conclusion. The porous metal/cement interface displays substantially more stability than does the bone/cement interface. Although these tests evaluate initial stability in an
Purpose. The coronoid process is an integral component for elbow stability. In the setting of a comminuted coronoid fracture, where repair is not possible, a prosthetic device may be beneficial in restoring elbow stability. The hypothesis of this
Background. Complications of metal-on-metal hip resurfacing, leading to implant failure, include femoral notching, neck fracture, and avascular necrosis. Revision arthroplasty options include femoral-only revision with a head, however mis-matching radial clearance could accelerate metal ion release. Alternatively, revision of a well-fixed acetabular component could lead to further bone loss, complicating revision surgery. We have developed a ceramic hip resurfacing system with a titanium-ceramic taper junction; taking advantage of the low frictional torque and wear rates that ceramic affords. Taking a revision scenario into account, the ceramic head has a deep female taper for the resurfacing stem, but also a superficial tapered rim. Should revision to this resurfacing be required, any femoral stem with a 12/14 taper can be implanted, onto which a dual taper adaptor is attached. The outer diameter of the taper adaptor then becomes the male taper for the superficial taper of the ceramic head; ultimately allowing retention of the acetabular component. In an
Correct positioning of the femoral component in resurfacing hip arthroplasty (RHA) is an important factor in successful long-term outcomes. The purpose of computer-assisted navigation (CAS) in resurfacing is to insert the femoral neck guide wire with greater accuracy and to help size the femoral component, thus reducing the risk of notching at the head and neck junction. Several recent studies reported satisfactory precision and accuracy of CAS. However, there is little evidence that CAS is useful in the presence of anatomical deformities of the proximal femur, which is frequently observed in young patients with secondary degenerative joint disease. The purpose of this in vitro study was to determine the accuracy of an image-free RHA navigation system in the presence of angular deformity of the neck, pistol grip deformity of the head and neck junction and slipped upper femoral epiphysis deformity.Background
Aim
Our aim was to compare the biomechanical strength modified side-to-side repair with modified pulvertaft technique keeping overlap length, anchor points, type of suture, suture throw and amount of suture similar. In our study, we have used turkey tendons. Two investigators performed 34 repairs during one summer month. All mechanical testing was carried out using the tensile load testing machine. Variables measured were maximum load, load to first failure, modulus, load at break, mode of failure, site of failure, tensile strain, and tensile stress. The statistical comparison was carried by Levene's test and T test for means. The mean maximum load tolerated by modified side-to-side repair was 50.3N(S.D13.7) and that by modified pulvertaft 46.96N(S.D: 16.4), overall it was 48.29 N (S.D: 14.57). The tensile stress at maximum load for modified pulvertaft and modified side-to-side repair was 4.2MPa(S.D: 3.1) and 4.7 MPa (S.D: 3.8) respectively {Overall 4.3MPa(S.D: 3.5)}. The tensile stress at yield was 4.01 MPa (S.D: 3.1) and 5.5 MPa (S.D: 3.7) respectively for modified pulvertaft and modified side-to-side repair {overall 4.44 MPa (S.D: 3.45)}. The tensile strain at maximum load respectively for side-to-side and modified pulvertaft repair was 7.87%(S.D: 33.3) and 7.84%(S.D: 34.02) respectively. We found no statistical difference between 2 repairs in terms of strength, load to first failure, and maximum load to failure. The suture cut through was the commonest mode of failure. Our study uniquely compares two techniques under standard conditions, and contrary to existing evidence found no difference.
Fractures of the proximal humerus represent a major osteoporotic burden. Recent developments in CT imaging have emphasized the importance of cortical bone thickness distribution in the prevention and management of fragility fractures. We aimed to experimentally define the CT density of cortical bone in the proximal humerus for building cortical geometry maps. With ethical approval we used ten fresh frozen human proximal humeri. These were stripped of all soft tissue and high resolution CT images were then taken. The humeral heads were then subsequently resected to allow access to the metaphyseal area. Using curettes, cancellous bone was removed down to hard cortical bone. Another set of CT images of the reamed specimen was then taken. Using CT imaging software and a CAD interface we then compared cortical contours at different CT density thresholds to the reference inner cortical contour of our reamed specimens. Working with 3D model representations of these cortical maps, we were able to accurately make distance comparison analyses based on different CT thresholds.Introduction
Methods
Revision total hip replacements are likely to have higher complication rates than primary procedures due to the poor quality of the original bone. This may be constrained to achieve adequate fixation strength to prevent future “aseptic loosening” [1]. A thin, slightly flexible, acetabular component with a three dimensional, titanium foam in-growth surface has been developed to compensate for inferior bone quality and decreased contact area between the host bone and implant by better distributing loads across the remaining acetabulum in a revision situation. This is assumed to result in more uniform bone apposition to the implant by minimizing stress concentrations at the implant/bone contact points that may be associated with a thicker, stiffer acetabular component, resulting in improved implant performance.[2] To assemble the liner to the shell, the use of PMMA bone cement is recommended at the interface between the polyethylene insert and the acetabular shell as a locking mechanism configuration may not be ideal due to the flexibility in the shell [3]. The purpose of this study was to quantify the mechanical integrity of a thin acetabular shell with a cemented liner in a laboratory bench-top total hip revision condition. Two-point loading in an unsupported cavity was created in a polyurethane foam block to mimic the contact of the anterior and posterior columns in an acetabulum with superior and inferior defects. This simulates the deformation in an acetabular shell when loaded anatomically [4]. The application has been extended to evaluate the fatigue performance of the Titanium metal foam Revision Non-Modular Shell Sequentially Cross Linked PE All-Poly Inserts and its influence on liner fixation.
Existing techniques of posterior multi-point C1/2 stabilisation are technically demanding and can be hazardous. The coauthors have recently reported successful atlantoaxial fusion using a novel C1/2 stabilisation technique employing C1 multi-axial posterior arch screws (MA-PAS) in a clinical series of three patients where anatomical anomalies precluded established techniques. The technically less demanding nature of this new technique, and possible wider application in patients with normal anatomy, led the authors to investigate its biomechanical stability compared to other established techniques. Twenty-four human fresh-frozen cadaveric spines were harvested C0-C5. Motion was restricted to between C0 and C4. Each spine was non-destructively tested in flexion/extension, lateral bending and axial rotation, firstly in the intact state and then after Type 2 odontoid fracture destabilisation and insertion of Magerl-Gallie, Unicortical Harms, Bicortical Harms or MA-PAS instrumentation. ROM between C1 and C2 was monitored using two digital cameras. Results for each technique were compared statistically compared using ANOVA. The C1-C2 joint of the intact spines demonstrated high flexibility in flexion/extension (16.5deg). After instrumentation all specimens showed significantly reduced ROM in flexion/extension (Magerl-Gallie FE = 4.2deg, Unicort Harms FE = 7.2deg, Bicort Harms FE = 4.4deg). Lateral bend ROM of instrumented specimens (Magerl-Gallie LB =3.8deg, Unicort Harms LB = 3.8deg, Bicort Harms LB =2.3 deg) was, however, similar or slightly greater than intact (2.7 deg) . MA-PAS showed similar ROM in flexion/extension (4.2 deg) as the Magerl-Gallie and Harms techniques but was slightly higher in lateral bend (5.3 deg). The MA-PAS technique was shown to have similar biomechanical stability to the Magerl-Gallie and Harms techniques. Given the demonstrated biomechanical stability of the MA-PAS technique, it may be a suitable alternative to the existing technically demanding, and possibly more hazardous, multi-point fixation techniques in patients with normal, as well as anomalous, C1/2 segmental anatomy.
Direct arthroscopic cartilage assessment remains the gold standard. It is recommended by the International Cartilage Repair Society (ICRS) to systematically assess cartilage status during arthroscopy but this examination is highly subjective, poorly reproducible, time-consuming and lacks precision. US has shown good potential for cartilage evaluation but is limited in extra-articular conditions. It is also difficult to manually maintain a perfect perpendicularity between the ultrasound beam and the curved surface of the cartilage. Therefore, we have developed a navigated intra-articular US probe (NIAUS). The NIAUS probe could contribute to a more exhaustive and direct intra-articular evaluation of cartilage integrity. Navigation enables control of the US echo pulse perpendicularity and its localisation relative to the joint. Our objectives were (1) to evaluate automatic cartilage thickness measurement with the NIAUS probe in comparison to high definition MRI on cartilage samples, (2) to generate a real-time 3D map of the thickness parameter on samples, and (3) to demonstrate the feasibility of a full NIAUS probe cartilage scan on a specimen distal femur in arthroscopic conditions. The NIAUS probe is a 4.5mm probe consisting of a 64 element linear array transducer with a central frequency of 13 MHz and a motorised head. The NIAUS probe is navigated. The rotating US head position is controlled by navigation in order to enable constant perpendicular acquisition of cartilage. The NIAUS probe thickness measurement (1) was evaluated on bone and cartilage samples of 9 tibial plateaus. The cartilage thickness was measured via automatic segmentation. Each sample was also scanned in a high resolution MRI (4,7 Tesla) and cartilage thickness was semi-automatically extracted for comparison. During NIAUS scan, (2) a visual 3D map was generated. Finally (3), we scanned two distal femurs with the NIAUS probe in arthroscopic navigated conditions on one specimen and a 3D map of the distal femur thickness was generated in real time. NIAUS thickness measurement (1) absolute error compared to MRI for 9 plateaus ranged from 0.15mm to 0.32mm in median, p25=0.07 and 0.18, p75=0.28 and 0.5 respectively. 3D maps of the sample cartilage thickness (2) were generated in real time during the NIAUS scan. The cadaveric procedure (3) was conducted without incident via the two anterior portals and a 3D map of the distal femurs cartilage thickness was generated. A precise US arthroscopic grading and scoring of cartilage during surgery could help for better standardisation, prediction of results and making “live” decisions. Our
Arthroscopic electrosurgical tools for ablative, desiccating or coagulative effect are delivered as monopolar or bipolar probes. Monopolar electrosurgery delivers various profiles of heat energy directly to the tissue within a non-conductive irrigant (such as water or glycine) whereas bipolar electrosurgery creates an energy source by producing an electrical arc between the bipolar electrodes on the instrument head within an electro-conductive irrigation solution (saline) - and the heat generated is then transferred to the target tissues. This study investigated the heat generation within the simulated
Aim. Multispecies biofilms are associated with difficult periprosthetic joint infections (PJI), particularly if they have different antibiotic sensitivities. We aimed to determine if we could generate and kill a multispecies biofilm consisting of a Gram negative and Gram positive pathogen
3D printing and Bioprinting technologies are becoming increasingly popular in surgery to provide a solution for the regeneration of healthy tissues. The aim of our project is the regeneration of articular cartilage via bioprinting means, to manage isolated chondral defects. Chrondrogenic hydrogel (chondrogel: GelMa + TGF-b3 and BMP6) was prepared and sterilised in our lab following our standard protocols. Human adipose-derived mesenchymal stem cells were harvested from the infrapatellar fat pad of patients undergoing total knee joint replacements and incorporated in the hydrogel according to our published protocols. The chondrogenic properties of the chondrogel have been tested (histology, immunohistochemistry, PCR, immunofluorescence, gene analysis and 2. nd. harmonic generation microscopy) in vitro and in an ex-vivo model of human articular defect and compared with standard culture systems where the growth factors are added to the media at repeated intervals. The
Staphylococcus aureus is the most frequently isolated organism in periprosthetic joint infections. The mechanism by which synovial fluid (SF) kills bacteria has not yet been elucidated, and a better understanding of its antibacterial characteristics is needed. We sought to analyze the antimicrobial properties of exogenous copper in human SF against S. aureus. SF samples were collected from patients undergoing total elective knee or hip arthroplasty. Different S. aureus strains previously found to be sensitive and resistant, UAMS-1 and USA300 WT, respectively, were used. We performed
Aim. The management of PJIs is slowed down by the presence of bacteria forming biofilms where they may withstand antibiotic therapy. The use of adjuvant strategies, such as hydrolytic enzymes cocktail targeting biofilm matrices and facilitating their dispersion, is a promising option to limit impact of biofilms. Our aim was to evaluate the effect of enzymes cocktail combined with antibiotic dual therapy of rifampicin and vancomycin in a relevant
Objective. Clinical wear depends on several factors such as implant specific factors (material, design, and sterilization), surgical factors/techniques, and patient-specific factors (weights and activities). The load magnitude for wear testing in the standard protocols (i.e., 2 kN as per ASTM F1714 or 3 kN as per ISO 14243-3) represent an average patient weight and does not address the other “what-if”’ scenarios (i.e., wear vs. patient weights, activities, duration, etc.,). The results from
INTRODUCTION. Deformation of modular acetabular press-fit shells is a topic of much interest for surgeons and manufacturer. Such modular components utilise a titanium shell with a liner manufactured from metal, polyethylene or ceramic. Initial fixation is achieved through a press-fit between shell and acetabulum with the shell mechanically deforming upon insertion. Shell deformation may disrupt the assembly process of inserting the bearing liner into the acetabular shell for modular systems. This may adversely affect the integrity and durability of the components and the tribology of the bearing. OBJECTIVE. Most clinically relevant data to quantify and understand such shell deformation can be achieved by cadaver measurements. ATOS Triple Scan III was identified as a measurement system with the potential to perform those measurements. The study aim was to validate an ATOS Triple Scan III optical measurement system against a co-ordinate measuring machine (CMM) using
Background:. Standardized preclinical wear testing cannot replicate the variations of wear rates and wear mechanisms seen in-vivo [1]. Therefore, a lot of studies focused on testing scenarios which replicate a wider range of patient-specific conditions such as different activities or malalignment of components. However, differences between the in-vivo and