Advertisement for orthosearch.org.uk
Results 1 - 20 of 30
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 139 - 139
11 Apr 2023
Jeong S Suh D Park J Moon J
Full Access

Olecranon plates used for the internal fixation of complex olecranon fractures are applied directly over the triceps tendon on the posterior aspect of the olecranon. The aim of the study is to describe the relationship of the plates and screws to the triceps tendon at the level of the olecranon. Eight cadaveric elbows were used. Dimensions of the triceps tendon at the insertion and 1cm proximal were measured. A long or a short olecranon plate was then applied over the olecranon and the most proximal screw applied. The length of the plate impinging on the tendon and the level of the screw tract on the tendon and bone were measured. The mean olecranon height was 24.3cm (22.4-26.9cm) with a tip-to-tendon distance of 14.5cm (11.9-16.2cm). The triceps tendon footprint averaged 13.3cm (11.7-14.9cm) and 8.8cm (7.6-10.2cm) in width and length, respectively. The mean width of the central tendon 1 cm proximal to the footprint was 6.8 cm. The long olecranon plate overlay over more movable tendon length than did the short plate and consequently the superior screw pierced the triceps tendon more proximally with the long plate. Using the Mann-Whitney U test, the differences were significant. The long olecranon plates encroach on more triceps tendon than short plates. This may be an important consideration for olecranon fractures with regards implant loosening or triceps tendon injury


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 78 - 78
4 Apr 2023
Voropai V Nieher M Kratsch A Kirchner W Giggel B Lohmann C Bertrand J Weißmantel S Döring J
Full Access

Total knee arthroplasty is one of the most common surgeries. About 92% of all implanted knee endorposthesis in 2020 were manufactured from uncoated CoCrMo articulating on ultra-high-molecular-weight polyethylene. All articluations generate wear particles and subsequent emission of metal ions due to the mechanical loading. These wear particles cause diverse negative reactions in the surrounding tissues and can lead to implant loosening. Coating technologies might offer the possibility to reduce this wear. Therefore, we investigated the applicability of tetrahedral amorphous carbon (ta-C) coating on CoCrMo alloy. Polished specimens made of CoCrMo wrought alloy according to ISO 5832-12 were coated with ta-C coatings with different layer structure using pulsed laser deposition (PLD). This process allows the deposition of ta-C coatings with low internal stress using an additional relaxation laser. Surface quality and mechanical properties of the coating were characterised using optical surface measurements (NanoFocus μsurf expert, NanoFocus AG) and a nanoindentation tester NHT. 3. (Anton Paar GmbH). Scratch tests were performed on Micro Scratch Tester MST. 3. (Anton Paar TriTec SA) to define the coating adhesion. Pin-on-plate tribological tests, with a polyethylene ball sliding on the ta-C-coated plate under a defined load according to ISO 14243-1 were performed using a linear tribometer (Anton Paar GmbH) to evaluate the tribological and wear properties. The ta-C coatings showed a mean roughness Ra of 5-20 nm and a hardness up to 60 GPa (n=3). The adhesion of the ta-C coatings (n=3) was comparable to the commercial coatings like TiN and TiNbN. The pin-on-plate tests showed an improvement of tribological properties in comparison with the polished uncoated CoCrMo specimens (n=3). The ta-C coatings applied by DLP technology show increased hardness compared to the base material and sufficient adhesion. Further research will be needed to investigate the optimal coating strategy for implant coating


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 131 - 131
11 Apr 2023
van Hoogstraten S Arts J
Full Access

An increasingly used treatment for end-stage ankle osteoarthritis is total ankle replacement (TAR). However, implant loosening and subsidence are commonly reported complications, leading to relatively high TAR failure rates. Malalignment of the TAR has often been postulated as the main reason for the high incidence of these complications. It remains unclear to what extent malalignment of the TAR affects the stresses at the bone-implant interface. Therefore, this study aims to elucidate the effect of TAR malalignment on the contact stresses on the bone-implant interface, thereby gaining more understanding of the potential role of malalignment in TAR failure. FE models of the neutrally aligned as well as malaligned CCI Evolution TAR implant (Van Straten Medical) were developed. Separate models were developed for the tibial and talar segment, with the TAR components in neutral alignment and 5° and 10° varus, valgus, anterior and posterior malalignment, resulting in a total of 9 differently aligned TAR models. Loading conditions of the terminal stance phase of the gait cycle, when the force on the ankle joint is highest (5.2x body weight), were applied. Peak and mean contact pressure and shear stress at the bone-implant interface were analyzed. Also, stress distributions on the bone-implant interface were visualized. In the neutrally aligned tibial and talar TAR models, peak contact pressures of respectively 98.4 MPa and 68.2 MPa, and shear stresses of respectively 49.3 MPa and 39.0 MPa were found. TAR malalignment increases peak contact pressure and shear stress on the bone-implant interface. A maximum peak contact pressure of 177 MPa was found for the 10° valgus malaligned tibial component and the highest shear stress found was 98.5 MPa for the 10° posterior malaligned talar model. Upon TAR malalignment contact stresses increase substantially, suggesting that proper orientation of the TAR is needed to minimize peak stresses on the bone-implant interface. This is in line with previous studies, which state that malalignment considerably increases bone strains, micromotion, and internal TAR contact pressures, which might increase the risk of TAR failure. Further research is needed to investigate the relationship between increased contact stresses at the bone-implant interface and TAR failure


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 79 - 79
1 Mar 2021
Doodkorte R Roth A van Rietbergen B Arts J Lataster L van Rhijn L Willems P
Full Access

Complications after spinal fusion surgery are common, with implant loosening occurring in up to 50% of osteoporotic patients. Pedicle screw fixation strength reduces as a result of decreased trabecular bone density, whereas sublaminar wiring is less affected by these changes. Therefore, pedicle screw augmentation with radiopaque sublaminar wires (made with Dyneema Purity® Radiapque fibers, DSM Biomedical, Geleen, the Netherlands) may improve fixation strength. Furthermore, sublaminar tape could result in a gradual motion transition to distribute stress over multiple levels and thereby reduce implant loosening. The objective of this study is to test this hypothesis in a novel experimental setup in which a cantilever bending moment is applied to individual human vertebrae. Thirty-eight human cadaver vertebrae were stratified into four different groups: ultra-high molecular weight polyethylene sublaminar tape (ST), pedicle screw (PS), metal sublaminar wire (SW) and pedicle screw reinforced with sublaminar tape (PS+ST). The vertebrae were individually embedded in resin, and a cantilever bending moment was applied bilaterally through the spinal rods using a universal material testing machine. This cantilever bending setup closely resembles the loading of fixators at transitional levels of spinal instrumentation. The pull-out strength of the ST (3563 ± 476N) was not significantly different compared to PS, SW or PS+ST. The PS+ST group had a significantly higher pull-out strength (4522 ± 826N) compared to PS (2678 ± 292N) as well as SW (2931 ± 250N). The higher failure strength of PS + ST compared to PS indicates that PS augmentation with ST may be an effective measure to reduce the incidence of screw pullout, even in osteoporotic vertebrae. Moreover, the lower stiffness of sublaminar fixation techniques and the absence of damage to the cortices in the ST group suggest that ST as a stand-alone fixation technique in adult spinal deformity surgery may also be clinically feasible and offer clinical benefits


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 31 - 31
1 Mar 2021
Hopwood J Redmond A Chapman G Richards L Collins S Brockett C
Full Access

Abstract. Objectives. Implant loosening remains a common cause of total ankle replacement (TAR) revision, and has been associated with wear-mediated osteolysis. Limited pre-clinical studies for TARs have been reported and the variety of experiment settings make it difficult to compare wear rates. Factors such as simulator control mechanism; whether pneumatic or electromechanical, may influence the integrity of the simulator outputs with respect to input profiles. This study compares the wear of a TAR, tested in electromechanical and pneumatic experimental simulators under identical input conditions. Methods. Twelve medium BOX® (MatOrtho Ltd) TARs (n=6 for each simulator) were tested in an electromechanical and pneumatic knee simulator (Simulation Solutions, UK) for 3 million cycles (Mc). Standard ‘Leeds’ displacement-controlled inputs were used. Kinematic performance was investigated by comparing the output profiles against the maximum demanded input values. The lubricant used was 25% new-born calf serum and wear was determined gravimetrically. Results. There was no significant difference (P=0.66) in wear rate between simulators (electromechanical = 15.96 ± 6.37mm. 3. /Mc; pneumatic = 14.51 ± 5.27mm. 3. /Mc). The electromechanical simulator (3157.06 ± 1.52N) achieved the maximum load (3150N), but the pneumatic simulator was unable to attain the demand (2542.34 ± 86.52N). Maximum AP displacement from the electromechanical simulator was 3.27 ± 0.07mm (3.1mm input), compared to 3.62 ± 0.95mm from the pneumatic simulator. Internal/external rotation angle was 7.97° ± 0.00 (8° input) and 7.24° ± 0.12 from the electromechanical and pneumatic simulators respectively. Both simulators achieved the demanded flexion angle (±15°). Conclusions. The outputs from the electromechanical simulator followed the input profiles more closely than the pneumatic simulator. Despite these differences, there was no significant influence on wear rate. The variation in kinematics between simulators was not sufficient to significantly change the tribological conditions of the TAR. The authors recommend the use of electromechanical simulators for future studies where more demanding and adverse conditions may be applied. Declaration of Interest. (a) fully declare any financial or other potential conflict of interest


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 113 - 113
1 Mar 2021
George A Ellis M Gill R
Full Access

Hypoxic Inducible Factor and Hypoxic mimicking agents (HMA) trigger the initiation and promotion of angiogenic-osteogenic cascade events. However, there has been paucity of studies investigating how HIF could be over expressed under chronic hypoxic conditions akin to that seen in sickle cell disease patients to help form a template for tackling the matter of macrocellular avascular necrosis. Angiogenesis and osteogenesis are tightly coupled during bone development and regeneration, and the hypoxia-inducible factor-1 alpha (HIF-1) pathway has been identified as a key component in this process studies have shown. There are still no established experimental models showing how this knowledge can be used for the evaluation of bone implant integration and suggest ways of improving osseointegration in sickle cell disease patients with hip arthroplasty and thereby prevent increased implant loosening. The aim of this study is to help develop an in vitro experimental model which would mimic the in vivo pathologic state in the bone marrow of sickle cell disease patients. It also seeks to establish if the hypoxic inducible factor (HIF) could be over expressed in vitro and thus enhancing osseointegration. MG63 osteoblastic cells were cultured under normoxia and hypoxic conditions (20%; and 1% oxygen saturation) for 48 and 72 hours. Cobalt chloride was introduced to the samples in order to mimic true hypoxia. Cells cultured under normoxic conditions and without cobalt chloride was used as the control in this study. The expression of the hypoxic inducible factor was assessed using the reverse transcriptase qualitative polymerase chain reaction (RT-qPCR). There was increased expression of HIF1-alpha at 72hours as compared to 48hours under the various conditions. The level of expression of HIF increased from 48hrs (mean rank= 4.60) to 72hrs (mean rank =5.60) but this difference was not statistically significant, X2(1) = 0.24, p =0.625. The mean rank fold change of HIF in hypoxic samples decreased compared to the normoxic samples but this difference was not statistically significant, X2(1) = 0.54, p= 0.462. Therefore, the expression of HIF is only increased with prolonged hypoxia as seen in the 72hours samples. The expression of HIF increased in samples with CoCl2 (mean rank=5.17), compared with samples without CoCl2 (mean rank 4.67), however this was not statistically significant, X2(1) = 0.067, p=0.796, p value > 0.05. The over expression of HIF was achieved within a few days (72hours) with the introduction of Cobalt Chloride, which is a mimetic for hypoxia similar to the in vivo environment in sickle cell disease patients. This is an in vitro model which could help investigate osseointergation in such pathologic bone conditions


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 92 - 92
1 Mar 2021
Barzegari M Boerema FP Geris L
Full Access

3D-printed orthopedic implants have been gaining popularity in recent years due to the control this manufacturing technique gives the designer over the different design aspects of the implant. This technique allows us to manufacture implants with material properties similar to bone, giving the implant designer the opportunity to address one of the main complications experienced after total hip arthroplasty (THA), i.e. aseptic loosening of the implant. To restore proper function after implant loosening, the implant needs to be replaced. During these revision surgeries, some extra bone is removed along with the implant, further increasing the already present defects, and making it harder to achieve proper mechanical stability with the revision implant. A possible way to limit the increasing loss of bone is the use of biodegradable orthopedic implants that optimize long-term implant stability. These implants need to both optimize the implant such that stress shielding is minimized, and tune the implant degradation rate such that newly formed bone is able to replace the degrading metal in order to maintain a proper bone-implant contact. The hope is that such (partly) degradable implants will lead to a reduction in the size of the bone defects over time, making possible future revisions less likely and less complex. We focused on improving the long-term implant stability of patient-specific acetabular implants for large bone defects and the modeling of their biodegradable behavior. To improve long-term implant stability we implemented a topology optimization approach. A patient-specific finite element model of the hip joint with and without implant was derived from CT-scans to evaluate the performance of the designs during the optimization routine. To evaluate the biodegradation behavior, a quantitative mathematical model was developed to assess the degradation rates of the biodegradable part of the implant. Currently, the biodegradation model has been implemented for magnesium (Mg) implants as a first proof of concept. For a first test case, an optimized implant was found with stress shielding levels below 20% in most regions. The highest stress shielding levels were found at the bone implant interface. The biodegradation model has been validated using experimental data, which includes immersion tests of simple scaffolds created from Commercial Pure Mg. The mass loss of the scaffold is about 0.8 mg/cm. 2. for the first day of immersion in simulated body fluid (SBF) solution. After the formation of a protective film on the surface of the simple scaffold, the degradation rate starts to slow down. Initial results presented serve as a proof of concept of the developed computational framework for the implant optimization and the implant biodegradation behavior. Currently, timing calibration, benchmarking and validation are taking place. Reducing implant-induced stress shielding, obtaining a better implant integration and reduction of bone defects, by allowing for bone to partially replace the implant over time, are crucial design factors for large bone defect implants. In this research, we have developed in-silico models to investigate these factors. Once validated and coupled, the models will serve as an important tool to find the appropriate biodegradable implant designs and biodegradable metal properties for THA applications, that improve current implant lifetime while ensuring proper mechanical functioning


Aims

This study intended to investigate the effect of vericiguat (VIT) on titanium rod osseointegration in aged rats with iron overload, and also explore the role of VIT in osteoblast and osteoclast differentiation.

Methods

In this study, 60 rats were included in a titanium rod implantation model and underwent subsequent guanylate cyclase treatment. Imaging, histology, and biomechanics were used to evaluate the osseointegration of rats in each group. First, the impact of VIT on bone integration in aged rats with iron overload was investigated. Subsequently, VIT was employed to modulate the differentiation of MC3T3-E1 cells and RAW264.7 cells under conditions of iron overload.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_3 | Pages 56 - 56
1 Apr 2018
Nishitani K Ishikawa M de Mesy Bentley K Ito H Matsuda S Daiss J Schwarz E
Full Access

INTRODUCTION. Staphylococci species account for ∼80 % of osteomyelitis cases. While the most severe infections are caused by Staphylococcus aureus (S. aureus), the clinical significance of coagulase negative Staphylococcus epidermidis (S. epidermidis) infections remain controversial. In general, S. epidermidis was known to be a protective commensal bacterium. However, recent studies have shown that intra-operative low-grade S. epidermidis contamination prevents bone healing. Thus, the purpose of this study is to compare the pathogenic features of S. aureus and S. epidermidis in an established murine model of implant-associated osteomyelitis. METHODS. All animal experiments were performed on IACUC approved protocols. USA300LAC (MRSA) and RP62A(S. epidermidis) were used as prototypic bacterial strains. After sterilization, stainless steel pins were implanted into the tibiae of BALB/c mice (n=5 each) with or without Staphylococci. Mice were euthanized on day 14, and the implants were removed for scanning electron microscopy (SEM). Tibiae were fixed for mCT prior to decalcification for histology. RESULTS. The histology of S. aureus infected tibiae demonstrated massive osteolysis and abscesses formation. In contrast, the histology from S. epidermidis infected tibiae was indistinguishable from uninfected controls. Gross mCT analyses revealed massive bone defects around the infected implant with reactive bone formation only in the S. aureus group. The osteolysis findings were confirmed by quantitative analysis, as the medial hole area of S. aureus infected tibiae (1.67 ± 0.37 mm2) was larger than uninfected (0.15 ± 0.10 mm2) (p < 0.001) and S. epidermidis (0.19 ± 0.14 mm2) (p < 0.001) groups. Consistently, the %biofilm area on the implants of the S. aureus group (39.0 ± 13.7 %) was significantly larger than uninfected (6.3 ± 2.3 %) (p < 0.001) and S. epidermidis (12.9 ± 7.4 %) (p < 0.001). Although the amount of biofilm of S. epidermidis was much smaller than S. aureus, the presence of bacteria on the implant were confirmed by SEM. In addition, the empty lacunae, which is a feature of mature biofilm and evidence of bacterial emigration, were also present on both S. epidermidis and S. aureus infected implants. DISCUSSION. In this study, we confirmed the aggressive pathologic features S. aureus on host bone, soft tissues and biofilm formation. In contrast, we show that S. epidermidis is incapable of inducing osteolysis, reactive bone formation or soft tissue abscesses, even though it colonizes the implant in small biofilms. Collectively, the results support a potential role for S. epidermidis in implant loosening and fracture non-unions, as the bacteria can form small biofilms that could interfere with osseous integration and bone healing. However, future studies are warranted to assess the effects of S. epidermidis biofilm on implant loosening


Bone & Joint 360
Vol. 12, Issue 4 | Pages 44 - 46
1 Aug 2023
Burden EG Whitehouse MR Evans JT


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_2 | Pages 69 - 69
1 Jan 2017
Van Der Straeten C Banica T De Smet A Van Onsem S Sys G
Full Access

Systemic metal ion monitoring (Co;Cr) has proven to be a useful screening tool for implant performance to detect failure at an early stage in metal-on-metal hip arthroplasty. Several clinical studies have reported elevated metal ion levels after total knee arthroplasty (TKA), with fairly high levels associated with rotating hinge knees (RHK) and megaprostheses. 1. In a knee simulator study, Kretzer. 2. , demonstrated volumetric wear and corrosion of metallic surfaces. However, prospective in vivo data are scarce, resulting in a lack of knowledge of how levels evolve over time. The goal of this study was to measure serum Co and Cr levels in several types TKA patients prospectively, evaluate the evolution in time and investigate whether elevated levels could be used as an indicator for implant failure. The study was conducted at Ghent University hospital. 130 patients undergoing knee arthroplasty were included in the study, 35 patients were lost due to logistic problems. 95 patients with 124 knee prostheses had received either a TKA (primary or revision) (69 in 55 patients), a unicompartimental knee arthroplasty (7 UKA), a RHK (revision −7 in 6 patients) or a megaprosthesis (malignant bone tumours − 28 in 27 patients). The TKA, UKA and RHK groups were followed prospectively, with serum Co and Cr ions measured preoperatively, at 3,6 and 12 months postoperatively. In patients with a megaprosthesis, metal ions were measured at follow-up (cross-sectional study design). In primary knees, we did not observe an increase in serum metal ion levels at 3, 6 or 12 months. Two patients with a hip arthroplasty had elevated preTKA Co and Cr levels. There was no difference between unilateral and bilateral knee prostheses. In the revision group, elevated pre-revision levels were found in 2 failures for implant loosening. In both cases, ion levels decreased postoperatively. In revisions with a standard TKA, there was no significant increase in metal ions compared to primary knee arthroplasty. RHK were associated with a significant increase in Co levels even at short-term (3–12 months). The megaprosthesis group had the highest metal ion levels and showed a significant increase in Co and Cr with time in patients followed prospectively. With the current data, we could not demonstrate a correlation between metal ion levels, size of the implant or length of time in situ. In primary knee arthroplasty with a standard TKA or UKA, metal ion levels were not elevated till one year postoperatively. This suggests a different mechanism of metal ion release in comparison to metal-on-metal hip arthroplasties. In two cases of revision for implant loosening, pre-revision levels were elevated, possibly associated with component wear, and decreased after revision. With RHK, slightly elevated ion levels were found prospectively. Megaprostheses had significantly elevated Co and Cr levels, due to corrosion of large metallic surfaces and/or wear of components which were not perfectly aligned during difficult reconstruction after tumour resection. Further research is needed to assess the clinical relevance of metal ion levels in knee arthroplasty


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_16 | Pages 101 - 101
1 Nov 2018
George A Ellis M Gill R
Full Access

It is well documented that implant loosening rate in sickle cell disease patients is higher than that seen in patients with hip arthroplasty from other indications. The Hypoxic inducible factor(HIF) - is activated in the microcellular hypoxic environment and this through a cascade of other enzymatic reactions promotes the activity of other factors and further help enhance angiogenesis and osteogenesis. The aim of this study was to investigate and propose a potential model for investigating osseointegration in a hypoxic microcellular environment using osteoblasts(MG63). Human MG63 osteoblastic cells were cultured under normoxia and hypoxic conditions (20%; and 1% oxygen saturation) for 72 hours under two different condition- with and without cobalt chloride. The samples cultured under normoxic condtions without cobalt chloride acted as control. Using qualitative polymerase chain reaction-(qPCR) - HIF expression was assessed under the above conditions in relation to the control. The results showed there was significant expression of the HIF 1 alpha protein under hypoxic condition with cobalt chloride in comparison with the control samples- all at 72hours incubation. Mann-Whitney U test was used to deduce level of significance of fold change.(p=0.002; <0.05). This was deemed as being a significant difference in the level of expression of HIF compared to the control. The results show that the hypoxic inducible factor can be expressed using the above tested. experimental invitro-model with significant results which can be a foundation for further research into improving hip implant prosthesis design to help enhance osseo-integration in sickle cell disease patient with AVN


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_3 | Pages 3 - 3
1 Apr 2018
Trieb K
Full Access

Introduction. Today TKR is considered one of the most successful operative procedures in orthopedic surgery. Nevertheless, failure rates of 2 – 10% depending on the length of the study and the design are still reported. This provides evidence for further development in knee arthroplasty. Particularly the oxide ceramics used now in THA show major advantages due to their excellent tribological properties, their significantly reduced third-body wear as well as their high corrosion resistance. A further advantage of ceramic materials is their potential use in patients with metal allergy. Metallic wear induces immunological reactions resulting in hypersensitivity, pain, osteolysis and implant loosening. The purpose of our study was to examine the safety of the tibial component of a novel all-ceramic TKR. Materials and Methods. We tested the tibial components of the primary knee implant BPK-S Integration Ceramic. Both the tibial and the femoral component consist of BIOLOX®delta ceramic The standards ISO 14879-1 and ASTM F1800-07 describe the test set-up for the experimental fatigue strength testing of tibial components from knee implants. We conducted the testing with a significantly increased maximum load of 5,300 N (900 N are required). A final burst strength test was carried out after the fatigue load testing in the same embedding and with the same test set-up. Results. No specimen failed during fatigue load testing. The subsequent post-fatigue burst strength testing showed a maximum strength against fracture of at least 9.7 kN for size 3 and at least 12.1 kN for size 6. Discussion. The good results of the strength testing of the tibial component of the BPK-S Integration Ceramic tibial plateau supported the good initial clinical outcome without any implant specific complications of this knee design. Further clinical studies have to show if this design fulfills the high expectations over long periods of time


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_4 | Pages 45 - 45
1 Apr 2018
Markhoff J Weinmann M Schulze C Nebe B Bader R
Full Access

Nowadays, biomaterials can be used to maintain or replace several functions of the human body being constricted or lost due to tumors, fractures, injuries as well as chronic diseases, infections or simply aging. Titanium and its alloys, i.e. Ti6Al4V are the most common materials (70 to 80%) used for structural orthopedic implants due to their unique combination of good mechanical properties, corrosion resistance and biocompatibility. Addition of β-stabilizers, e. g. niobium (Nb), can improve the mechanical properties of such titanium alloys further, simultaneously offering excellent biocompatibility. Previous studies concerning biocompatibility analyses with niobium and especially Ti-42Nb specimens are rarely described; none for niobium and Ti-42Nb powders examining human cell viability, collagen and interleukin synthesis. In this in vitro study, human osteoblasts were cultured on different roughened niobium specimens (Nb Amperit, Nb Ampertec), Nb sheets and spherical Ti-42Nb (sintered and 3D-printed by selective laser melting, SLM) and compared with forged Ti6Al4V specimens. Furthermore, human osteoblasts were incubated with particulates of the Nb and Ti-42Nb specimens in three particle concentrations over four and seven days to imitate influence of wear debris against the background of osteolysis and aseptic implant loosening. Thereby, the specimens with the roughest surfaces, i.e. Ti-42Nb and Nb Ampertec, revealed excellent and similar results concerning cell viability (WST-1 test, live-dead staining) and collagen-I synthesis superior to forged Ti6Al4V. Examinations with particulate debris disclosed a significant dose-dependent influence of all powders with Nb Ampertec showing the highest decrease of cell viability and collagen-I synthesis. Furthermore, interleukin expression was only slightly increased for all powders. In summary, from a cell-biological point of view Nb Ampertec (sintered Nb) and Ti-42Nb materials seem to be superior alternatives for medical applications compared to common materials like forged Ti6Al4V


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_4 | Pages 51 - 51
1 Apr 2018
Trieb K
Full Access

Background. Innovative developments for total knee arthroplasty enhanced anatomical design and fixation in order to decrease particle-induced aseptic implant loosening. As hypersensitivity reactions to metallic implant materials have been recognized to possibly cause premature implant failure, ceramic materials might constitute a proper alternative solution. The aim of this prospective short-term study was the initial comparison of a completely metal-free ceramic with a geometrically identical metallic arthroplasty over a one-year follow-up period. Methods. Eighty patients requiring primary total knee arthroplasty were enrolled within this open-label prospective comparative study. Patients were randomly divided among two groups to either undergo implantation of a completely metal-free system using a composite matrix material containing aluminum oxide (Al2O3) and zirconium oxide (ZrO2) (n=40), or an anatomically identical metallic knee system made of a cobalt-chromium alloy (Co28Cr6Mo) (n=40) produced by the same manufacturer. Clinical assessment was performed preoperatively, and during follow-up at three and twelve months using the Knee Society Score, Oxford Knee Score and EQ-5D-VAS. For radiological evaluation, standard preoperative and postoperative standardized radiographs were taken at mentioned follow-up visits. Results. Demographical data were not significantly different among our two study groups, and no patient has been lost to follow-up. The postoperative clinical scores improved significantly at three and twelve month follow-ups, but did not differ statistically among groups. The radiologically evaluated mean postoperative mechanical and anatomical axes showed proper alignment within both groups at all times. Notably, no revision surgery had to be performed, and no complications were recorded whatsoever. Conclusion. To our knowledge, this is the first study comparing a total ceramic metal-free knee system with a geometrically identical metallic TKR. Within the short-term follow-up of minimally one year, no significant differences could be demonstrated clinically or radiologically, therefore making this ceramic knee system a suitable option for patients with a known hypersensitivity to metal. Mid-term and long-term studies will be required to demonstrate the overall efficiency of this TKR to potentially expand its medical indication


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XVIII | Pages 87 - 87
1 May 2012
Donaldson F Pankaj P Simpson A
Full Access

A significant source of failure for external fixation devices is loosening of the fixation implant. As bone competence drops with ageing or disease such as osteoporosis, the risk of loosening is likely to increase. However it is not clear how fixator configuration should be adapted to minimise loosening in weaker bone. The aim of this study was to assess the effect of bone competence on the yielding of bone tissue surrounding fixation implants, and thereby inform the selection of fixator configuration to minimise loosening. External fixation of the tibial midshaft using half-pins and Illizarov wires was modelled using finite-element analysis. Half-pin configurations of two and three stainless steel and titanium pins pins were assessed. Illizarov wire configurations of two and four wires were studied, over a range of wire tensions. Bone competence was varied by changing the cortical thickness and elastic properties of the bone fragments to approximate: a) young, high-density bone, b) middle-aged, mid-porosity bone and c) old-aged, severely porous bone. Bone elastic properties were taken from a recent study of cortical bone conducted by the authors. The interaction between implants and bone was modelled with contact analysis, enabling realistic separation. Implant loosening was included using a bone-specific, strain-based yield criterion. Regions where bone tissue yielded were identified as likely sites of loosening. In all cases loading was applied to simulate a one-legged stance. Half-pin fixation. Increasing the number of half-pins from two to three produced an approximate 80% reduction of yielded bone volume in all age groups. The volume of yielded bone increased with ageing, approximately three times greater in old-aged bone than in young bone. In the young and middle-aged cases yielded bone never penetrated the full cortex. Contrastingly, the full cortex was yielded in the old-aged bone fragments for both two- and three-pin fixation. In all cases the volume of yielded bone was greater at the pin(s) nearest to the fracture gap. The use of titanium pins increased the volume of yielded bone around half-pins by approximately 1.7 times. These results suggest bone competence, number of half-pins, location of half-pins and half-pin material all significantly influence implant loosening. Illizarov wire fixation. Increasing the number of Illizarov wires reduced the volume of yielded bone by approximately 60% in all age groups. The volume of yielded bone increased with ageing by a factor of approximately 2.0 times from young to old bone. Bone yielding never progressed through the entire cortex; it reached a maximum of 70% of the cortical thickness in two-wire fixation of the old-aged bone fragment. This is a possible reason for the lower rate of loosening in Illizarov wire fixation as compared to half-pin fixation. Increasing wire tension reduced the volume of yielded bone. These results suggest that bone competence, number of wires, wire tension and wire arrangement significantly influence loosening


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 55 - 55
1 Jan 2017
Rivière C Girerd D Ollivier M Argenson J Parratte S
Full Access

A principle of Total Knee Arthroplasty (TKA) is to achieve a neutral standing coronal alignment of the limb (Hip Knee Ankle (HKA) angle) to reduce risks of implant loosening, reduce polyethylene wear, and optimise patella tracking. Several long-term studies have questioned this because the relationship between alignment and implant survivorship is weaker than previously reported. We hypothesize standing HKA poorly predicts implant failure because it does not predict dynamic HKA, dynamic adduction moment, and loading of the knee during gait. Therefore, the aim of our study is to assess the relationship between the standing (or static) and the dynamic (gait activity) HKAs. We performed a prospective study on a cohort of 35 patients (35 knees) who were treated with a posterior-stabilized TKA for primary osteoarthritis between November 2012 and January 2013. Three months after surgery each patient had a standardized digital full-leg coronal radiographs and was classified as neutrally aligned TKA (17 patients), varus aligned (9 patients), and valgus aligned (4 patients). Patients then performed a gait analysis for level walking and dynamic HKA and adduction moment during the stance phase of gait were measured. We found standing HKA having a moderate correlation with the peak dynamic varus (r=0.318, p=0.001) and the mean and peak adduction moments (r=0.31 and r=-0.352 respectively). In contrast we did not find a significant correlation between standing HKA and the mean dynamic coronal alignment (r=0.14, p=0.449). No significant differences were found for dynamic frontal parameters (dynamic HKA and adduction moment) between patients defined as neutrally aligned or varus aligned. In our practice, the standing HKA after TKA was of little value to predict dynamic behaviour of the limb during gait. These results may explain why standing coronal alignment after TKA may have limited influence on long term implant fixation and wear


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_2 | Pages 48 - 48
1 Jan 2017
Pegg E Alotta G Barrera O
Full Access

Polyethylene wear of joint replacements can cause severe clinical complications, including; osteolysis, implant loosening, inflammation and pain. Wear simulator testing is often used to assess new designs, but it is expensive and time consuming. It is possible to predict the volume of polyethylene implant wear from finite element models using a modification of Archard's classic wear law [1–2]. Typically, linear elastic isotropic, or elasto-plastic material models are used to represent the polyethylene. The purpose of this study was to investigate whether use of a viscoelastic material model would significantly alter the predicted volumetric wear of a mobile-bearing unicompartmental knee replacement. Tensile creep-recovery experiments were performed to characterise the creep and relaxation behaviour of the polyethylene (moulded GUR 4150 samples machined to 180×20×1 mm). Samples were loaded to 3 MPa stress in 4 minutes, and then held for 6 hours, the tensile stress was removed and samples were left to relax for 6 hours. The mechanical test data was used fit to a validated three–dimensional fractional Maxwell viscoelastic constitutive material model [3]. An explicit finite element model of a mobile–bearing unicompartmental knee replacement was created, which has been described previously [4]. The medial knee replacement was loaded to 1200 N over a period of 0.2 s. The bearing was meshed using quadratic tetrahedral elements (1.5 mm seeding size based on results of a mesh convergence study), and the femoral component was represented as an analytical rigid body. Wear predictions were made from the contact stress and sliding distance using Archard's law, as has been described in the literature [1–2]. A wear factor of 5.24×10. −11. was used based upon the work by Netter et al. [2]. All models were created and solved using ABAQUS finite element software (version 6.14, Simulia, Dassault Systemes). The fractional viscoelastic material model predicted almost twice as much wear (0.119 mm. 3. /million cycles) compared to the elasto-plastic model (0.069 mm. 3. /million cycles). The higher wear prediction was due to both an increased sliding distance and higher contact pressures in the viscoelastic model. These preliminary findings indicate the simplified elasto-plastic polyethylene material representation can underestimate wear predictions from numerical simulations. Polyethylene is known to be a viscoelastic material which undergoes creep clinically, and it is not surprising that it is necessary to represent that viscoelastic behaviour to accurately predict implant wear. However, it does increase the complexity and run time of such computational studies, which may be prohibitive


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XVIII | Pages 85 - 85
1 May 2012
Abbas G Chuter G Williams J
Full Access

Introduction. Primary Total Elbow Replacement (TER) is gaining popularity as a primary treatment option for osteoporotic fractures of the elbow, particularly in patients with low demand. The aim of this study was to assess the clinical and functional efficacy of TER as a primary treatment for comminuted distal humerus fractures in the elderly. Methods. We retrospectively reviewed twenty-three patients (22 females and 1 male) who were treated with primary total elbow replacement for complex, intra-articular fractures of the distal humerus in the elderly between March 2000 and January 2010. The average age of the patients was seventy-five years (ranging from 66 to 94 years). Postoperative elbow function was assessed using the Mayo Elbow Performance Score. The radiological assessment was performed using antero-posterior and lateral radiographs done at follow-up appointments. Results. The average duration of follow up was 6 years. Overall, the mean Mayo elbow performance score was 93 points out of 100. The arc of flexion averaged at 94.3degrees. One patient developed blisters at her arm postoperatively but resolved with dressings. Two patients (8.6%) had mild pain at two years post surgery but there was no evidence of implant loosening or evidence of infection. One patient developed superficial infection which was treated with antibiotics. Nineteen (82%) of the twenty-three elbows had neither a complication nor further surgery from the time of TER to the recent follow up. Conclusions. Our review suggests that total elbow replacement as a primary treatment for comminuted distal humerus fractures in the elderly can give good to excellent results both in the short and the long term basis. When osteosynthesis is not a feasible option, especially in older patients who place lower demands on the joint, total elbow replacement can be considered a the primary treatment


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 312 - 312
1 Jul 2014
Malhotra R Kumar N Wu P Zaw A Liu G Thambiah J Wong H
Full Access

Summary. Metastatic spinal disease is a common entity of much debate in terms of ideal surgical treatment. The introduction of MIS can be a game-changer in the treatment of MSD due to less peri-operative morbidity and allowing earlier radiotherapy and/or chemotherapy. Introduction. Less invasive techniques have always been welcome for management of patients with ‘Metastatic Spinal Disorders’. This is because these patients can be poor candidates for extensive / major invasive surgery even though radiologically, there may be an indication for one. The aim of the treatment with Minimal Invasive Fixation (MIS) systems is mainly for ‘pain relief’ than to radically decrease tumour burden or to achieve near total spinal cord decompression, which could be major presentations in these patients. These procedures address the ‘spinal instability’ very well and they can address pain associated with compression fractures resulting from metastatic disease from a solid organ as well as multiple myeloma with minimal complications. These procedures can be combined with radiology and chemotherapy without much concern for wound problems in the way of infection or dehiscence. They also have a great advantage of timing of adjunct therapy closer to the index procedure. The disadvantage, however, are they do not allow thorough decompression of the spinal cord. There could also be problem in addressing patients who have severe vertebral height loss or loss of integrity of the anterior column where anterior column reconstruction may be required. There is a risk of inadequate fixation or implant loosening or failure. We aim to examine the results of MIS surgery in our department and support the rationale for its use. Patients and Methods. We prospectively collected data of patients who underwent MIS posterior instrumentation for MSD. Between June 2011 and December 2012, 10 patients presented with acute motor deficit, instability and/or threatening radiological features. Effectiveness of MIS was assessed in terms of operative parameters and clinical outcomes. Results. No patient suffered intra-operative complications. The median surgical time was 198 minutes (range: 149 – 403), median blood loss was 100 ml (range: 60 – 400). All patients maintained full neurological function and reported effective pain reduction. All patients were discharged with a median hospital stay was 13 days (range: 4 – 45) post-surgery. 9 patients started oncological treatment as planned. The median time in 7 patients who had radiotherapy post-surgery was 23 days (range: 20 – 40). Chemotherapy was initiated in 4 patients at a median of 9 days post-surgery (range: 6 – 23). No patient as yet has required open procedure due to progression of the disease. Discussion/Conclusion. We have shown that satisfactory outcomes are achievable with MIS in a selected group of patients with MSD. While our results are limited by small study size, we have been able to improve patient quality of living through minimally invasive intervention. By reducing surgical morbidity and enabling early implementation of oncological treatment, MIS has the potential to re-evaluate multi-disciplinary decision making for early surgery in MSD