Advertisement for orthosearch.org.uk
Results 1 - 5 of 5
Results per page:
Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_9 | Pages 39 - 39
1 May 2016
Meftah M Ranawat A Ranawat C
Full Access

Background. Wear and osteolysis are major contributors, which limit the durability of total hip Arthroplasty (THA) and ultimately cause it to fail. Efforts were made to decrease wear by highly cross-linked polyethylene (HXLPE) and using ceramic bearings. Questions/Purposes. The purpose of this study is to analyze and compare the five year performance of large sized (32mm and 36mm) ceramic and metal heads on X3 HXLPE (Stryker, Mahwah, NJ, USA). Materials and Methods. One hundred and twenty near-consecutive patients that underwent primary THA between January 2006 and December 2009 for osteoarthritis with five-year radiographic and clinical follow-up were identified from our institutional review board-approved prospective database. All patients received a non-cemented THA with larger femoral head (32 or larger) on X3 HXLPE, either a ceramic (n=60) or metal (n=60). Linear and volumetric wear was measured using the computer-assisted Roman software. Results. At final follow up, the mean wear rates were not significantly different (p=0.63): 0.018 ± 0.06 mm/yr and 0.021 ± 0.06 mm/yr for ceramic-on-X3 and metal-on-X3, respectively. When negative values were considered zero as worst-case scenario, wear rates for ceramic-on-X3 and metal-on-X3 HXLPE groups were 0.032 ± 0.04 mm/yr and 0.041 ± 0.05 mm/yr, respectively (P=0.55). Mean volumetric wear rates were also statistically similar: 68.56 mm3/y and 79.96 mm3/y for the ceramic-on-X3 and metal-on-X3 HXLPE groups respectively (p=0.78); when negatives were considered zeroes, they were 121.42 mm3/y and 164.63 mm3/y, respectively (p=0.20). Patients with ceramic heads were significantly younger (p <0.01), more active (p<0.01) and had better clinical scores than those with metal heads. Conclusions. Large ceramic and metal heads on HXLPE have excellent durability at minimum 5 years followup without any statistical significant difference in linear or volumetric wear rates


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_3 | Pages 116 - 116
1 Jan 2016
Park C Meftah M Ranawat CS
Full Access

Introduction. Wear and osteolysis are major contributors which limit the durability of total hip arthroplasty (THA) and ultimately cause it to fail. Efforts were made to decrease the wear by highly cross-linked polyethylene (HXLPE) and using ceramic bearings. The purpose of this study is to analyze the five year performance of large sized (32mm and 36mm) ceramic and metal heads on X3 HXLPE (Stryker, Mahwah, NJ). Materials and Method. From Jan 2006 to June 2008, 81 consecutive patients with minimum 5 year radiographic and clinical followup were identified from out institutional prospective database. 51 non-cemented THA (45 patients) had ceramic on HXLPE (CoX3) group and 30 hips (29 patients) had metal on HXLPE (MoX3) group. Mean age was 36 ± 8 years (36–76) and 50 ± 9 years (51–86) in ceramic and metal group, respectively. Wear rates were measured on an anteroposterior weight-bearing pelvis radiographs using the computer-assisted Roman software. Results. The mean WOMAC, PAQ, HSS and UCLA scores for CoX3 and MoX3 groups at final follow-up were 13.2 ± 17.3, 10.1 ± 14.4, 36.4 ± 5.3 and 5.9 ± 1.8 and 16.5 ± 17.8, 17.1 ± 17.2, 31.6 ± 10.5 and 5.3 ± 1.6, respectively. At the final follow up, the mean wear rates were 0.022 ± 0.06 mm/yr and 0.022 ± 0.05 mm/yr for CoX3 and MoX3 groups, respectively. This was not statistically significant (p=0.8). When negative values were considered zero, wear rates for CoX3 and MoX3 groups were 0.037 ± 0.04 mm/yr and 0.033 ± 0.04 mm/yr, respectively (p=0.6). Radiographic analysis does not reveal any incidence of osteolysis or loosening in both groups. Discussion and Conclusion. The five year wear rate of large diameter metal and ceramic femoral heads on HXLPE bearing demonstrated excellent similar wear rates. Longer follow-ups are required to assess superiority of one bearing over another


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_2 | Pages 98 - 98
1 Jan 2016
Kawamura H Oe K Ueda Y Okamoto N Nakamura T Ueda N Iida H
Full Access

Introduction. Highly cross-linked polyethylene (HXLPE) was developed to reduce the wear of articular-bearing surfaces in total hip arthroplasty (THA). This study aimed to compare the mean linear wear of HXLPE with a 22.225 mm diameter zirconia head with that of conventional polyethylene (CPE) with a 22.225 mm diameter ortron head. Materials and Methods. A prospective cohort study performed on 93 patients (113 hips) who had undergone primary cemented THAs at our hospital between January 2001 and December 2003. The subject population included 85 females and 8 males with a mean age of 58.0 years (22 to 78) at the time of surgery. The mean follow-up period was 10.2 years (9 to 12). We randomly used two types of implants: the HXLPE cup with a 22.225 mm diameter zirconia head (Kyocera Medical, Osaka, Japan) in 60 hips (HXLPE group), and the CPE cup with a 22.225 mm diameter ortron head (DePuy International, Leeds, UK) in 53 hips (CPE group). Linear wear (penatration) by computer-assisted method with PolyWare software (Draftware Inc, Indiana, USA) was measured at 10 years. Anteroposterior radiographs were evaluated for osteolysis or component loosening defined by the criteria of Hodgkinson et al. Analysis of covariance using the general linear models procedure was carried out to determine the linear wear rate difference between the groups after adjusting for variables (age at surgery, sex, body mass index, vertical distance, horizontal distance, cup inclination, and cup anteversion) as covariates. The differences were considered significant when the p value was <0.05. Results. The mean linear wear rate of HXLPE was 0.043 mm/year, compared with 0.109 mm/year for CPE (p<0.05). The incidence of osteolysis was 1 hip in the CPE group, compared with none in the HXLPE group. No evidence of revision for any reasons was noted. Statistical analysis revealed no significant differences among any variables. Conclusions. Polyethylene wear of HXLPE with a 22.225 mm zirconia head remains significantly lower than that of CPE with a 22.225 mm ortron head at 10 years after operation. HXLPE has a great advantage but careful continued follow-up will be required


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 131 - 131
1 Sep 2012
Mizokawa S Oonishi H Oonishi H Kyomoto M Iwamoto M Takano Y Ueno M
Full Access

Different types of highly cross-linked polyethylene (HXLPE) have been introduced widely in acetabular cups in hip prostheses to reduce the incidence of wear debris-induced osteolysis. Also, we reported that HXLPE cups with 28-mm alumina ceramic femoral head exhibited lower wear than conventional PE cups. Recently, the combination of HXLPE cup and larger diameter femoral head is used widely to prevent dislocation. In this study, we examined the wear of HXLPE with 32-mm alumina ceramic femoral head and compared it with the wear of HXLPE with 28-mm alumina ceramic femoral head. The in vivo wear of 60 HXLPE cups (Aeonian; Kyocera Corp., Kyoto, Japan, currently Japan Medical Materials Corp., Osaka, Japan) with 28-mm alumina ceramic femoral head with clinical use for 3.1–9.1 years (mean 7.4 years) and eight HXLPE cups with 32-mm alumina ceramic femoral head used for 2.3–3.2 years (mean 2.8 years) were examined by radiographic analysis. The early wear rate for the first year of HXLPE cups with 28-mm and 32-mm alumina ceramic femoral head were 0.24±0.10 mm/year and 0.29±0.12 mm/year respectively. There was no significant difference in both femoral head groups (p>0.05). The steady wear rate after 1 year were 0.001±0.03 mm/year and −0.03±0.10 mm/year respectively. There was no significant difference either in both femoral head groups (p>0.05). These findings from this radiographic analysis suggest that the early wear rate in the first 1 year probably represents the creep deformation in bedding-in stage; and the steady wear rate after 1 year probably represents mainly the wear than of the creep deformation. By the radiographic analysis, HXLPE cups in both femoral head groups exhibited low steady wear rate. In conclusion, we expect that the combination of HXLPE cup and 32-mm diameter alumina ceramic femoral head has favorable wear properties with possibility of prevention of dislocation in long-term clinical use


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_4 | Pages 56 - 56
1 Feb 2017
Kawata T Goto K So K Kuroda Y Okuzu Y Matsuda S
Full Access

Introduction. The long-term wear performance of highly cross-linked polyethylene (HXLPE) in cemented total hip arthroplasty (THA) has rarely been reported. Here we report a prospective randomized comparative analysis of radiographic wear after a minimum follow-up of 10 years in cemented THAs with either HXLPE or conventional polyethylene (CPE), and assess its clinical relevance. Patients and Methods. From 1999 to 2001, we conducted 94 primary cemented THAs with a 22.225-mm head at our hospital as part of a prospective randomized trial. All surgeries were performed using a direct lateral approach with a trochanteric osteotomy (Dall's approach). The patients were divided into 4 groups. Twenty-six hips in group A were implanted with CPE sockets against zirconia heads and Charnley-type stems. HXLPE sockets (Aeonian, Kyocera Medical Corp) were implanted in all hips in the other 3 groups. Twenty-five hips in group B were implanted with zirconia heads and KC stems (Kyocera Medical Corp), 23 hips in group C with zirconia heads and distal cylindrical stems, and 20 hips in group D with stainless steel heads and C-stem (DePuy Inc). The sockets were highly cross-linked by gamma irradiation at a dose of 35 kGy, heat annealed at 110ºC, and sterilized with 25 kGy of gamma irradiation in nitrogen. For radiographic evaluation, anteroposterior radiograms were taken for each patient annually, and every two years postoperatively for wear analyses. Two-dimensional head penetration was measured on each postoperative radiogram using a computer-aided technique. Results. Wear measurements were performed for 59 cases followed up over 10 years. Linear wear rates were 0.138±0.074 (mm/year±SD) for group A, 0.010±0.015 for group B, 0.013±0.020 for group C, and 0.012±0.027 for group D. Linear wear rates differed significantly between group A and other groups, and no significant difference was found among groups B, C, and D. There were four revision cases. Among them, two sockets of group A were revised for aseptic loosening at 7 and 14 years postoperatively with linear wear rates of 0.749 and 0.153 mm, respectively. Two stems of group B and C were revised for aseptic loosening at 10 and 9 years postoperatively with linear wear rates of 0.007 and 0.041 mm, respectively. There were no other cases with aseptic loosening in any group. Osteolysis was found in 10 cases (group A: 7, group B: 1, group C: 1, group D: 1), and there was a significant difference in linear wear rates between the cases with and without osteolysis (0.157±0.083 and 0.030±0.053 mm/year±SD respectively). Discussion. The two revision cases of HXLPE did not have aggressive socket wear, and possibly cement fracture caused osteolysis and stem instability. The results of this study indicate that there is a significant difference in wear rate between CPE and HXLPE, and it was evident that PE wear was associated with osteolysis and aseptic loosening of the socket