Advertisement for orthosearch.org.uk
Results 1 - 20 of 862
Results per page:
The Bone & Joint Journal
Vol. 104-B, Issue 7 | Pages 852 - 858
1 Jul 2022
Grothe T Günther K Hartmann A Blum S Haselhoff R Goronzy J

Aims. Head-taper corrosion is a cause of failure in total hip arthroplasty (THA). Recent reports have described an increasing number of V40 taper failures with adverse local tissue reaction (ALTR). However, the real incidence of V40 taper damage and its cause remain unknown. The aim of this study was to evaluate the long-term incidence of ALTR in a consecutive series of THAs using a V40 taper and identify potentially related factors. Methods. Between January 2006 and June 2007, a total of 121 patients underwent THA using either an uncemented (Accolade I, made of Ti. 12. Mo. 6. Zr. 2. Fe; Stryker, USA) or a cemented (ABG II, made of cobalt-chrome-molybdenum (CoCrMo); Stryker) femoral component, both with a V40 taper (Stryker). Uncemented acetabular components (Trident; Stryker) with crosslinked polyethylene liners and CoCr femoral heads of 36 mm diameter were used in all patients. At a mean folllow-up of 10.8 years (SD 1.1), 94 patients (79%) were eligible for follow-up (six patients had already undergone a revision, 15 had died, and six were lost to follow-up). A total of 85 THAs in 80 patients (mean age 61 years (24 to 75); 47 (56%) were female) underwent clinical and radiological evaluation, including the measurement of whole blood levels of cobalt and chrome. Metal artifact reduction sequence MRI scans of the hip were performed in 71 patients. Results. A total of 20 ALTRs were identified on MRI, with an incidence of 26%. Patients with ALTR had significantly higher median Co levels compared with those without ALTR (2.96 μg/l (interquartile range (IQR) 1.35 to 4.98) vs 1.44 μg/l (IQR 0.79 to 2.5); p = 0.019). Radiological evidence of osteolysis was also significantly associated with ALTR (p = 0.014). Median Cr levels were not significantly higher in those with ALTR compared with those without one (0.97 μg/l (IQR 0.72 to 1.9) v 0.67 μg/l (IQR 0.5 to 1.19; p = 0.080). BMI, sex, age, type of femoral component, head length, the inclination of the acetabular component, and heterotopic ossification formation showed no significant relationship with ALTR. Conclusion. Due to the high incidence of local ALTR in our cohort after more than ten years postoperatively, we recommend regular follow-up investigation even in asymptomatic patients with V40 taper and metal heads. As cobalt levels correlate with ALTR occurrence, routine metal ion screening and consecutive MRI investigation upon elevation could be discussed. Cite this article: Bone Joint J 2022;104-B(7):852–858


Bone & Joint Open
Vol. 2, Issue 11 | Pages 1004 - 1016
26 Nov 2021
Wight CM Whyne CM Bogoch ER Zdero R Chapman RM van Citters DW Walsh WR Schemitsch E

Aims. This study investigates head-neck taper corrosion with varying head size in a novel hip simulator instrumented to measure corrosion related electrical activity under torsional loads. Methods. In all, six 28 mm and six 36 mm titanium stem-cobalt chrome head pairs with polyethylene sockets were tested in a novel instrumented hip simulator. Samples were tested using simulated gait data with incremental increasing loads to determine corrosion onset load and electrochemical activity. Half of each head size group were then cycled with simulated gait and the other half with gait compression only. Damage was measured by area and maximum linear wear depth. Results. Overall, 36 mm heads had lower corrosion onset load (p = 0.009) and change in open circuit potential (OCP) during simulated gait with (p = 0.006) and without joint movement (p = 0.004). Discontinuing gait’s joint movement decreased corrosion currents (p = 0.042); however, wear testing showed no significant effect of joint movement on taper damage. In addition, 36 mm heads had greater corrosion area (p = 0.050), but no significant difference was found for maximum linear wear depth (p = 0.155). Conclusion. Larger heads are more susceptible to taper corrosion; however, not due to frictional torque as hypothesized. An alternative hypothesis of taper flexural rigidity differential is proposed. Further studies are necessary to investigate the clinical significance and underlying mechanism of this finding. Cite this article: Bone Jt Open 2021;2(11):1004–1016


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_12 | Pages 79 - 79
23 Jun 2023
Paprosky W Gerlinger T
Full Access

Previous reports on the outcomes of isolated head and liner exchange in revision total hip arthroplasty have found high rates of instability following these surgeries. Most reports have studied constructs using ≤28mm femoral heads. The purpose of this study was to determine if modern techniques with the use of larger head sizes can improve the rate of instability after head and liner exchange. We identified 138 hips in 132 patients who underwent isolated head and liner exchange for polyethylene wear/osteolysis (57%), acute infection (27%), metallosis (13%), or other (2%). All patients underwent revision with either 32mm (23%), 36mm (62%), or 40mm (15%) diameter heads. Crosslinked polyethylene was used in all revisions. Lipped and/or offset liners were used in 104 (75%) hips. Average follow up was 3.5 (1.0–9.1) years. Statistical analyses were performed with significance set at p<0.05. Revision-free survivorship for any cause was 94.6% and for aseptic causes was 98.2% at 5 years. 11 (8%) hips experienced a complication with 7 (5%) hips requiring additional revision surgery. Following revision, 4 (3%) hips experienced dislocation, 5 (4%) hips experienced infection, and 1 (1%) hip was revised for trunnionosis. No demographic or surgical factors significantly affected outcomes. Our study shows that isolated head and liner exchange using large femoral heads and modern liners provides for better stability than previous reports. The most common complication was infection. We did not identify specific patient, surgical or implant factors that reduced the risk of instability or other complication


The Bone & Joint Journal
Vol. 105-B, Issue 10 | Pages 1052 - 1059
1 Oct 2023
El-Sahoury JAN Kjærgaard K Ovesen O Hofbauer C Overgaard S Ding M

Aims. The primary outcome was investigating differences in wear, as measured by femoral head penetration, between cross-linked vitamin E-diffused polyethylene (vE-PE) and cross-linked polyethylene (XLPE) acetabular component liners and between 32 and 36 mm head sizes at the ten-year follow-up. Secondary outcomes included acetabular component migration and patient-reported outcome measures (PROMs) such as the EuroQol five-dimension questionnaire, 36-Item Short-Form Health Survey, Harris Hip Score, and University of California, Los Angeles Activity Scale (UCLA). Methods. A single-blinded, multi-arm, 2 × 2 factorial randomized controlled trial was undertaken. Patients were recruited between May 2009 and April 2011. Radiostereometric analyses (RSAs) were performed from baseline to ten years. Of the 220 eligible patients, 116 underwent randomization, and 82 remained at the ten-year follow-up. Eligible patients were randomized into one of four interventions: vE-PE acetabular liner with either 32 or 36 mm femoral head, and XLPE acetabular liner with either 32 or 36 mm femoral head. Parameters were otherwise identical except for acetabular liner material and femoral head size. Results. A total of 116 patients participated, of whom 77 were male. The median ages of the vE-PE 32 mm and 36 mm groups were 65 (interquartile range (IQR) 57 to 67) and 63 years (IQR 56 to 66), respectively, and of the XLPE 32 mm and 36 mm groups were 64 (IQR 58 to 66) and 61 years (IQR 54 to 66), respectively. Mean total head penetration was significantly lower into vE-PE acetabular liner groups than into XLPE acetabular liner groups (-0.219 mm (95% confidence interval -0.348 to -0.090); p = 0.001). There were no differences in wear according to head size, acetabular component migration, or PROMs, except for UCLA. There were no cases of aseptic loosening or failures requiring revision at long-term follow-up. Conclusion. Significantly lower wear was observed in vE-PE acetabular liners than in XLPE acetabular liners. No difference in wear was observed between different head size or PROMs except for the UCLA at ten years. Cite this article: Bone Joint J 2023;105-B(10):1052–1059


The Bone & Joint Journal
Vol. 101-B, Issue 4 | Pages 386 - 389
1 Apr 2019
Hampton C Weitzler L Baral E Wright TM Bostrom MPG

Aims. The aim of this study was to evaluate fretting and corrosion in retrieved oxidized zirconium (OxZr; OXINIUM, Smith & Nephew, Memphis, Tennessee) femoral heads and compare the results with those from a matched cohort of cobalt-chromium (CoCr) femoral heads. Patients and Methods. A total of 28 OxZr femoral heads were retrieved during revision total hip arthroplasty (THA) and matched to 28 retrieved CoCr heads according to patient demographics. The mean age at index was 56 years (46 to 83) in the OxZr group and 70 years (46 to 92) in the CoCr group. Fretting and corrosion scores of the female taper of the heads were measured according to the modified Goldberg scoring method. Results. The OxZr-retrieved femoral heads showed significantly lower mean corrosion scores than the CoCr heads (1.3 (1 to 2.75) vs 2.1 (1 to 4); p < 0.01). Mean fretting scores were also significantly lower in the OxZr cohort when compared with the CoCr cohort (1.3 (1 to 2) vs 1.5 (1 to 2.25); p = 0.02). OxZr heads had more damage in the proximal region compared with the distal region of the head. Location had no impact on damage of CoCr heads. A trend towards increased corrosion in large heads was seen only in the CoCr heads, although this was not statistically significant. Conclusion. Retrieval analysis of OxZr femoral heads showed a decreased amount of fretting and corrosion compared with CoCr femoral heads. OxZr seems to be effective at reducing taper damage. Cite this article: Bone Joint J 2019;101-B:386–389


The Bone & Joint Journal
Vol. 103-B, Issue 7 | Pages 1206 - 1214
1 Jul 2021
Tsikandylakis G Mortensen KRL Gromov K Mohaddes M Malchau H Troelsen A

Aims. We aimed to investigate if the use of the largest possible cobalt-chromium head articulating with polyethylene acetabular inserts would increase the in vivo wear rate in total hip arthroplasty. Methods. In a single-blinded randomized controlled trial, 96 patients (43 females), at a median age of 63 years (interquartile range (IQR) 57 to 69), were allocated to receive either the largest possible modular femoral head (36 mm to 44 mm) in the thinnest possible insert or a standard 32 mm head. All patients received a vitamin E-doped cross-linked polyethylene insert and a cobalt-chromium head. The primary outcome was proximal head penetration measured with radiostereometric analysis (RSA) at two years. Secondary outcomes were volumetric wear, periacetabular radiolucencies, and patient-reported outcomes. Results. At two years, 44 patients in each group were available for RSA assessment. The median total two-year proximal head penetration was -0.02 mm (IQR -0.09 to 0.07; p = 0.548) for the largest possible head and -0.01 mm (IQR -0.07 to 0.10; p = 0.525) for 32 mm heads. Their difference was not statistically significant (p = 0.323). Neither group demonstrated a bedding-in period. The median steady-state volumetric wear rates were 6.1 mm. 3. /year (IQR -59 to 57) and 3.5 mm. 3. /year (-21 to 34) respectively, and did not differ between the groups (p = 0.848). There were no statistically significant differences in periacetabular radiolucencies or patient-reported outcomes. Conclusion. The use of the largest possible metal head did not increase vitamin E-doped cross-linked polyethylene wear compared with 32 mm heads at two years. Linear wear was negligible and volumetric wear rates were very low in both head size groups. There was a tendency towards higher values of volumetric wear in large heads that warrants longer-term evaluation before any definite conclusions about the association between head size and wear can be drawn. Cite this article: Bone Joint J 2021;103-B(7):1206–1214


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_16 | Pages 66 - 66
19 Aug 2024
Terhune EB Sutter EG Balkissoon R Pallante GD Specht L Leikin JB Kwon YM Lewallen DG Gerlinger TL Jacobs JJ
Full Access

Ceramic-on-ceramic (CoC) articulations in total hip arthroplasty (THA) have low wear, but the unique risk of fracture. After revision for CoC fracture, ceramic third bodies can lead to runaway wear of cobalt chrome (CoCr) causing extremely elevated blood cobalt. We present five cases of ceramic liner fractures revised to a CoCr head associated with the rapid development of severe cobalt toxicity. We identified 5 cases of fractured CoC THA treated with revision to CoCr on highly cross-linked polyethylene (HXLPE) – three to conventional bearings and two to modular dual mobility bearings (CoCr acetabular liner, CoCr femoral head, and HXLPE). Mean follow up was 2.5 years after CoCr/HXLPE re-revision. Symptoms of cobalt toxicity occurred at average 9.5 months after revision for ceramic fracture (range 6–12). All patients developed vision and hearing loss, balance difficulties, and peripheral neuropathy. Several had cardiomyopathy, endocrinopathy, and local skin discoloration. Two reported hip pain. Re-revision for cobalt toxicity occurred at an average of 22 months (range 10–36) after revision for ceramic fracture. Average serum cobalt level at re-revision was 991 μg/L (range 734–1302, normal <1 μg/L). All CoCr heads exhibited massive wear with asphericity; deep tissues exhibited prominent metallosis. Treatment consisted of debridement and revision to a ceramic head with HXLPE. Serum cobalt improved to an average of 25 μg/L at final follow up. All patients reported partial improvement in vision and hearing; peripheral neuropathy and balance did not recover. Systemic cobalt toxicity is a rare but devastating complication of ceramic fracture in THA treated with cobalt-alloy bearings. Cobalt alloy bearings should be avoided in this setting. The diagnosis of systemic cobalt toxicity requires a high index of suspicion and was typically delayed following systemic symptoms. Debridement and revision to a ceramic-on-HXLPE leads to improvement but not resolution of cobalt toxicity complications


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_14 | Pages 31 - 31
1 Nov 2021
Rogmark C Nåtman J Hailer N Jobory A Cnudde P
Full Access

Dislocation after total hip arthroplasty in individuals treated for acute hip fracture is up to 10 times more frequent than in elective patients. Whilst approach plays a role, the effect of head sizes in conventional THA and dual mobility cups (DMC) is less studied in fracture cases. The total dislocation rate at 1-year and 3-year revision rates were recorded in this observational study on 8,031 patients with acute hip fracture, treated with a THA 2005–2014. Swedish Arthroplasty Register data were linked with the National Patient Register. Cox multivariable regression models were fitted to calculate adjusted hazard ratios stratified by approach and head size. The cumulative risk of dislocation during year 1 was 2.7% (95% CI 2.2–3.2) with lateral approach and 8.3% (7.3–9.3) with posterior approach (KM estimates). In the posterior approach group DMC was associated with a lower risk of dislocation compared to cTHA=32mm (HR=0.21; 0.07–0.68), whilst a head size <32mm carried a higher risk (HR=1.47; 1.10–1.98). These differences were no longer visible when revision in general was used as outcome. Neither of the implant designs influenced the dislocation risk when direct lateral approach was used. Male gender and severe comorbidity increased the risk. DMC with lateral approach was associated with a reduced risk of revision in general (HR=0.36; 0.13–0.99). Head size did not influence the revision risk. When aiming to reduce the risk of any dislocation, lateral approach – regardless of cup/head design – is referable. If, for any reason, posterior approach is used, DMC is associated with the lowest risk of dislocation. This is not reflected in analysing revision in general as outcome. An interpretation could be that there are different thresholds for dislocation prompting revision


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_10 | Pages 26 - 26
1 Oct 2020
Hamilton WG Robertson RN Cororaton AD Ho H Hopper RH
Full Access

Introduction. The rise of the anterior approach (AA) in primary surgery has led to enthusiasm for using this approach in revision surgery, especially because head and liner exchanges have been accompanied by a high dislocation rate when the posterior approach (PA) is used. The aim of this study was to compare the institutional dislocation rate comparing the PA and AA in isolated head and liner exchange. Methods. A retrospective institutional database query was done to identify all aseptic head and liner exchanges between the years 2010- June, 2020. 186 hips were identified with an average age of 64.8+/−10.8 yrs (27.9–87.6) and average BMI of 28.7+/−6.3 kg/m2 (16.2–52). The reason for revision was polyethylene wear and osteolysis in 105 hips (56.5%), adverse tissue reaction to metal on metal (MOM) in 43 hips (23.1%), and recurrent instability in 38 hips (20.4%). The approach used for the revision surgery was PA in 128 hips (68.8%) and AA in 58 hips (31.2%). The mean follow-up for this cohort is 1.9±2 yrs (0.0–8.6). Results. The overall dislocation rate for the entire cohort was 28/186 (15%). There was no difference in the dislocation rate whether the revision surgery was performed by the PA 19/128 (15%) or the AA 9/58 (16%) (p=0.9). With the numbers available, there was no difference in dislocation rates when comparing reason for revision: poly wear/osteolysis 12/105 (11%), MOM 8/43 (19%) or recurrent instability 8/38 (21%) (p=0.28). The head size used in the exchange did not influence the dislocation rate; 28 mm-2/11 (18%), 32 mm-6/56 (11%), 36 mm-16/91 (18%), 40 mm-4/26 (15%) (p=0.89). Conclusion. The use of either the PA or AA did not alter the dislocation rate in our cohort. While there was a trend towards a higher dislocation rate when liner exchange was performed for MOM or recurrent instability, no statistical difference was shown with the numbers available. The head size used in the revision did not influence the rate of dislocation


The Bone & Joint Journal
Vol. 102-B, Issue 10 | Pages 1303 - 1310
3 Oct 2020
Kjærgaard K Ding M Jensen C Bragdon C Malchau H Andreasen CM Ovesen O Hofbauer C Overgaard S

Aims. The most frequent indication for revision surgery in total hip arthroplasty (THA) is aseptic loosening. Aseptic loosening is associated with polyethylene liner wear, and wear may be reduced by using vitamin E-doped liners. The primary objective of this study was to compare proximal femoral head penetration into the liner between a) two cross-linked polyethylene (XLPE) liners (vitamin E-doped (vE-PE)) versus standard XLPE liners, and b) two modular femoral head diameters (32 mm and 36 mm). Methods. Patients scheduled for a THA were randomized to receive a vE-PE or XLPE liner with a 32 mm or 36 mm metal head (four intervention groups in a 2 × 2 factorial design). Head penetration and acetabular component migration were measured using radiostereometric analysis at baseline, three, 12, 24, and 60 months postoperatively. The Harris Hip Score, University of California, Los Angeles (UCLA) Activity Score, EuroQol five-dimension questionnaire (EQ-5D), and 36-Item Short-Form Health Survey questionnaire (SF-36) were assessed at baseline, three, 12, 36, and 60 months. Results. Of 220 screened patients, 127 were included in this study. In all, 116 received the allocated intervention, and 94 had their results analyzed at five years. Head penetration was similar between liner materials and head sizes at five years, vE-PE versus XLPE was -0.084 mm (95% confidence interval (CI) -0.173 to 0.005; p = 0.064), and 32 mm versus 36 mm was -0.020 mm (95% CI -0.110 to 0.071; p = 0.671), respectively. No differences were found in acetabular component migration or in the patient-reported outcome measures. Conclusion. No significant difference in head penetration was found at five years between vE-PE and XLPE liners, nor between 32 mm and 36 mm heads. Cite this article: Bone Joint J 2020;102-B(10):1303–1310


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 11_Supple_A | Pages 52 - 54
1 Nov 2012
Rodriguez JA Rathod PA

Large femoral heads have been used with increasing frequency over the last decade. The prime reason is likely the effect of large heads on stability. The larger head neck ratio, combined with the increased jump distance of larger heads result in a greater arc of impingement free motion, and greater resistance to dislocation in a provocative position. Multiple studies have demonstrated clear clinical efficacy in diminishing dislocation rates with the use of large femoral heads. With crosslinked polyethylene, wear has been shown to be equivalent between larger and smaller heads. However, the stability advantages of increasing diameter beyond 38 mm have not been clearly demonstrated. More importantly, recent data implicates large heads in the increasing prevalence of groin pain and psoas impingement. There are clear benefits with larger femoral head diameters, but the advantages of diameters beyond 38 mm have not yet been demonstrated clinically


The Bone & Joint Journal
Vol. 96-B, Issue 2 | Pages 147 - 156
1 Feb 2014
Rajpura A Kendoff D Board TN

We reviewed the literature on the currently available choices of bearing surface in total hip replacement (THR). We present a detailed description of the properties of articulating surfaces review the understanding of the advantages and disadvantages of existing bearing couples. Recent technological developments in the field of polyethylene and ceramics have altered the risk of fracture and the rate of wear, although the use of metal-on-metal bearings has largely fallen out of favour, owing to concerns about reactions to metal debris. As expected, all bearing surface combinations have advantages and disadvantages. A patient-based approach is recommended, balancing the risks of different options against an individual’s functional demands.

Cite this article: Bone Joint J 2014;96-B:147–56.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_1 | Pages 59 - 59
1 Jan 2018
Morlock M Bishop N Huber G Bünte D
Full Access

Taper corrosion in Total Hip Arthroplasty has surfaced as a clinically relevant problem and has recently also been reported for metal heads against polyethylene. Low neck stiffness is a critical contributing factor. Catastrophic taper failures have been reported for one particular stem design with a small V-40 taper made from a less stiff titanium-alloy. The purpose of this study was to identify factors involved in the failure process. 31 revised CoCr heads ranging from 32 to 44m diameter combined with TMZF-Titanium alloy stem with a V-40 taper (Accolade I) were analysed. Stems were only available for catastrophic failure cases with dis-association (n=8) or taper fracture (n=1). Clinical data were limited to time-in-situ, patient gender and age. Head material loss increased with time in situ (r²=0.49, p<0.001). Longer heads and material loss exceeding 15mm³ showed bottoming out and consecutive catastrophic stem taper failure. Heads with failed stem tapers were all 36mm diameter. The head starts rotating on the stem taper after bottoming out, causing major abrasive wear, ultimately resulting in catastrophic failure; it is surprising that these catastrophic cases did not exhibit clinical symptoms due to raised Co and Cr metal ions, which must have resulted from the large amount of CoCr lost from the female head taper. This would have attracted medical attention and prevented catastrophic failure by taper dis-association. Control exams of patients treated with the respective stem type in combination with large CoCr heads should include metal ion determination in blood or serum, even if no clinical symptoms are present, in order to detect taper corrosion before catastrophic failure occurs


Bone & Joint Research
Vol. 5, Issue 8 | Pages 338 - 346
1 Aug 2016
MacLeod AR Sullivan NPT Whitehouse MR Gill HS

Objectives. Modular junctions are ubiquitous in contemporary hip arthroplasty. The head-trunnion junction is implicated in the failure of large diameter metal-on-metal (MoM) hips which are the currently the topic of one the largest legal actions in the history of orthopaedics (estimated costs are stated to exceed $4 billion). Several factors are known to influence the strength of these press-fit modular connections. However, the influence of different head sizes has not previously been investigated. The aim of the study was to establish whether the choice of head size influences the initial strength of the trunnion-head connection. Materials and Methods. Ti-6Al-4V trunnions (n = 60) and two different sizes of cobalt-chromium (Co-Cr) heads (28 mm and 36 mm; 30 of each size) were used in the study. Three different levels of assembly force were considered: 4 kN; 5 kN; and 6 kN (n = 10 each). The strength of the press-fit connection was subsequently evaluated by measuring the pull-off force required to break the connection. The statistical differences in pull-off force were examined using a Kruskal–Wallis test and two-sample Mann–Whitney U test. Finite element and analytical models were developed to understand the reasons for the experimentally observed differences. Results. 36 mm diameter heads had significantly lower pull-off forces than 28 mm heads when impacted at 4 kN and 5 kN (p < 0.001; p < 0.001), but not at 6 kN (p = 0.21). Mean pull-off forces at 4 kN and 5 kN impaction forces were approximately 20% larger for 28 mm heads compared with 36 mm heads. Finite element and analytical models demonstrate that the differences in pull-off strength can be explained by differences in structural rigidity and the resulting interface pressures. Conclusion. This is the first study to show that 36 mm Co-Cr heads have up to 20% lower pull-off connection strength compared with 28 mm heads for equivalent assembly forces. This effect is likely to play a role in the high failure rates of large diameter MoM hips. Cite this article: A. R. MacLeod, N. P. T. Sullivan, M. R. Whitehouse, H. S. Gill. Large-diameter total hip arthroplasty modular heads require greater assembly forces for initial stability. Bone Joint Res 2016;5:338–346. DOI: 10.1302/2046-3758.58.BJR-2016-0044.R1


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_1 | Pages 2 - 2
1 Jan 2018
Ertas E Çaglar O Atilla B Tokgozoglu A
Full Access

Recent advances in polyethylene and ceramic technologies has allowed us to use larger size heads without compromising the wear properties of a THR. One benefit of this change has been proposed to be a lower incidence of dislocation. This is a retrospective study looking at the effect of using large heads in our patient population. We retrospectively evaluated the dislocation rate in 913 THR's performed using the same standardized surgical technique employed by a single team of surgeons at our institution between 1995 and 2015. Patients were assigned to two groups: small (28 mm and smaller) (SH), large diameter heads (36 mm and larger) (LH). The cup position was measured and plotted to determine its status according to the Lewinnek safe zone (15°±10° for anteversion, 40°±10° for inclination). Sixteen of the 472 SH dislocated (3.4 percent) while 5 of the 441 LH group (1.1 percent) (P=0.04). In all of the LH patients that dislocated the cup position was in the safe range of Lewinnek. However, in the LH group only 65 percent of the cups were in the safe zone. Using the same surgical approach by changing the head size to 36 mm and larger, we were able decrease the dislocation rate significantly. Errors of cup positioning according to Lewinnek became oblivious when using large heads compared to small heads. In our opinion, using large heads in total hip arthroplasty makes a difference in terms of dislocation


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_9 | Pages 18 - 18
1 May 2018
Mammoliti L Van Bavel D De Steiger R Rainbird S
Full Access

Introduction/Aims. The Exeter Stem can be used with metal femoral head that are made of either cobalt chrome, or stainless steel. The aim of this study was to compare the rates of revision of these two metal femoral head types when used with this femoral component. Method. Australian Orthopaedic Association National Joint Replacement Registry (AOANJRR) Data from September 1999 until December 2015 for all primary THRs using an Exeter or an Exeter v40 stem with the diagnosis of osteoarthritis were analysed. Only bearing couples that used a metal head with polyethylene were included. The cumulative percent revision (CPR) calculated using Kaplan-Meier estimates were compared for the two metal head types. CPR were further analysed by age, polyethylene type and head size. Reasons for revision and types of revision were assessed. Results. There were 51666 THR that used Exeter or Exeter v40 stems of which 12554 had femoral heads made of cobalt chrome and 39112 had heads made of stainless steel. There was no difference in the rate of revision overall when head types were compared. There was also no difference in CPR between the two head types with age. Hips that used cobalt chrome heads had a higher CPR than stainless steel heads when these were used against non-crosslinked polyethylene. When heads with a diameter of 32mm or greater were compared, those made of cobalt chrome had a higher rate of revision than stainless steel HR 1.38 (1.15, 1.66) P<0.001). Conclusion. There was no difference comparing cobalt chrome or stainless-steel heads, except where non-crosslinked polyethylene was used, or where the heads size was 32mm or greater. In these comparisons, heads made from cobalt chrome had a higher rate of revision


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_12 | Pages 13 - 13
1 Oct 2019
Gustafson JA Levine BR Jacobs JJ Pourzal R Lundberg HJ
Full Access

Introduction. Improper seating during head/stem assembly can lead to unintended micromotion between the femoral head and stem taper—resulting in fretting corrosion and implant failure. 1. There is no consensus—either by manufacturers or by the surgical community—on what head/stem taper assembly method maximizes modular junction stability in total hip arthroplasty (THA). A 2018 clinical survey. 2. found that orthopedic surgeons prefer applying one strike or three, subsequent strikes when assembling head/stem taper. However, it has been suggested that additional strikes may lead to decreased interference strength. Additionally, the taper surface finish—micro-grooves—has been shown to affect taper interference strength and may be influenced by assembly method. The objective of this study was to employ a novel, micro-grooved finite element (FEA) model of the hip taper interface and assess the role of head/stem assembly method—one vs three strikes—on modular taper junction stability. Methods. A two-dimensional, axisymmetric FEA model representative of a CoCrMo femoral head taper and Ti6Al4V stem taper was created using median geometrical measurements taken from over 100 retrieved implants. 3. Surface finish—micro-grooves—of the head/stem taper were modeled using a sinusoidal function with amplitude and period corresponding to retrieval measurements of micro-groove height and spacing, respectively. Two stem taper micro-groove geometries— “rough” and “smooth”—were modeled corresponding to the median and 5. th. percentile height and spacing measurements from retrievals. All models had a 3' (0.05°), proximal-locked angular mismatch between the tapers. To simulate implant assembly during surgery, multiple dynamic loads (4kN, 8kN, and 12kN) were applied to the femoral head taper in a sequence of one or three strikes. The input load profile (Figure 1) used for both cases was collected from surgeons assembling an experimental setup with a three-dimensional load sensor. Models were assembled and meshed in ABAQUS Standard (v 6.17) using four-node linear hexahedral, reduced integration elements. Friction was modeled between the stem and head taper using surface-to-surface formulation with penalty contact (µ=0.2). A total of 12 implicit, dynamic simulations (3 loads × 2 assembly sequences × 2 stem taper surface finishes) were run, with 2 static simulations at 4kN for evaluating inertial effects. Outcome variables included contact area, contact pressure, equivalent plastic strain, and pull-off force. Results. As expected, increasing assembly load led to increased contact area, pressures, and plasticity for both taper finishes. Rough tapers exhibited less total contact area at each loading level as compared to the smooth taper. Contact pressures were relatively similar across the stem taper finishes, except the 3-strike smooth taper, which exhibited the lowest contact pressures (Figure 2) and pull-off forces. The models assembled with one strike exhibited the greatest contact pressures, pull-off forces, and micro-groove plastic deformation (Figure 3). Conclusion. Employing 1-strike loads led to greater contact areas, pressures, pull-off forces, and plastic deformation of the stem taper micro-grooves as compared to tapers assembled with three strikes. Residual energy may be lost with subsequent assembly strikes, suggesting that one, firm strike maximizes taper assembly mechanics. These models will be used to identify the optimal design factors and impaction method to maximize stability of modular taper junctions. For any tables or figures, please contact the authors directly


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_11 | Pages 2 - 2
1 Jun 2016
MacLeod A Sullivan N Whitehouse M Gill R Harinderjit S
Full Access

Introduction. The majority of primary total hip arthroplasty (THA) procedures performed throughout the world use modular junctions, such as the trunnion-head interface; however, the failure of these press-fit junctions is currently a key issue that may be exacerbated by the use of large diameter heads. Several factors are known to influence the strength of the initial connection, however, the influence of different head sizes has not previously been investigated. The aim of the study was to establish whether the choice of head size influences the initial strength of the trunnion-head connection. Methods. Ti-6Al-4V trunnions (n = 60) and two different sizes of Co-Cr heads (28 mm and 36 mm) were used in the study. Three different levels of assembly force were considered; 4, 5 and 6 kN (n = 10 each). The strength of the press-fit connection was subsequently evaluated by measuring the pull-off force required to break the connection. Finite element and analytical models were also developed to better understand the mechanics of the problem. Results. We report that 36 mm diameter heads had significantly lower pull-off forces when impacted at 4 and 5 kN (p < 0.001; p < 0.001) but not at 6 kN (p = 0.21) compared to 28 mm heads. Mean pull-off forces at 4 and 5 kN impaction forces were 20% lower for 36 mm heads compared to 28 mm heads. Discussion. This is the first study to demonstrate that the head-trunnion connection strength of larger diameter heads is compromised at the point of assembly. Our finite element and analytical models show that the differences in pull-off strength can be explained by differences in structural rigidity and the resulting interface pressures. It should be noted that this effect is likely to be even more pronounced for head diameters larger than 36 mm. Conclusion. We recommend that surgeons use 20% larger impaction forces for 36 mm heads than they would ordinarily use for 28 mm heads


Bone & Joint Research
Vol. 8, Issue 6 | Pages 275 - 287
1 Jun 2019
Clement ND Bardgett M Merrie K Furtado S Bowman R Langton DJ Deehan DJ Holland J

Objectives. Our primary aim was to describe migration of the Exeter stem with a 32 mm head on highly crosslinked polyethylene and whether this is influenced by age. Our secondary aims were to assess functional outcome, satisfaction, activity, and bone mineral density (BMD) according to age. Patients and Methods. A prospective cohort study was conducted. Patients were recruited into three age groups: less than 65 years (n = 65), 65 to 74 years (n = 68), and 75 years and older (n = 67). There were 200 patients enrolled in the study, of whom 115 were female and 85 were male, with a mean age of 69.9 years (sd 9.5, 42 to 92). They were assessed preoperatively, and at three, 12 and, 24 months postoperatively. Stem migration was assessed using Einzel-Bild-Röntgen-Analyse (EBRA). Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), Harris Hip Score (HHS), Hip Disability and Osteoarthritis Outcome Score (HOOS), EuroQol-5 domains questionnaire (EQ-5D), short form-36 questionnaire (SF-36,) and patient satisfaction were used to assess outcome. The Lower Extremity Activity Scale (LEAS), Timed Up and Go (TUG) test, and activPAL monitor (energy expelled, time lying/standing/walking and step count) were used to assess activity. The BMD was assessed in Gruen and Charnley zones. Results. Mean varus/valgus tilt was -0.77⁰ and axial subsidence was -1.20 mm. No significant difference was observed between age groups (p ⩾ 0.07). There was no difference according to age group for postoperative WOMAC (p ⩾ 0.11), HHS (p ⩾ 0.06), HOOS (p ⩾ 0.46), EQ-5D (p ⩾ 0.38), patient satisfaction (p ⩾ 0.05), or activPAL (p ⩾ 0.06). Patients 75 years and older had a worse SF-36 physical function (p = 0.01) and physical role (p = 0.03), LEAS score (p < 0.001), a shorter TUG (p = 0.01), and a lower BMD in Charnley zone 1 (p = 0.02). Conclusion. Exeter stem migration is within normal limits and is not influenced by age group. Functional outcome, patient satisfaction, activity level, and periprosthetic BMD are similar across all age groups. Cite this article: N. D. Clement, M. Bardgett, K. Merrie, S. Furtado, R. Bowman, D. J. Langton, D. J. Deehan, J. Holland. Cemented Exeter total hip arthroplasty with a 32 mm head on highly crosslinked polyethylene: Does age influence functional outcome, satisfaction, activity, stem migration, and periprosthetic bone mineral density? Bone Joint Res 2019;8:275–287. DOI: 10.1302/2046-3758.86.BJR-2018-0300.R1


The Bone & Joint Journal
Vol. 101-B, Issue 6_Supple_B | Pages 57 - 61
1 Jun 2019
Chalmers BP Mangold DG Hanssen AD Pagnano MW Trousdale RT Abdel MP

Aims. Modular dual-mobility constructs reduce the risk of dislocation after revision total hip arthroplasty (THA). However, questions about metal ions from the cobalt-chromium (CoCr) liner persist, and are particularly germane to patients being revised for adverse local tissue reactions (ALTR) to metal. We determined the early- to mid-term serum Co and Cr levels after modular dual-mobility components were used in revision and complex primary THAs, and specifically included patients revised for ALTR. Patients and Methods. Serum Co and Cr levels were measured prospectively in 24 patients with a modular dual-mobility construct and a ceramic femoral head. Patients with CoCr heads or contralateral THAs with CoCr heads were excluded. The mean age was 63 years (35 to 83), with 13 patients (54%) being female. The mean follow-up was four years (2 to 7). Indications for modular dual-mobility were prosthetic joint infection treated with two-stage exchange and subsequent reimplantation (n = 8), ALTR revision (n = 7), complex primary THA (n = 7), recurrent instability (n = 1), and periprosthetic femoral fracture (n = 1). The mean preoperative Co and Cr in patients revised for an ALTR were 29.7 μg/l (2 to 146) and 21.5 μg/l (1 to 113), respectively. Results. Mean Co and Cr levels were 0.30 μg/l and 0.76 μg/l, respectively, at the most recent follow-up. No patient had a Co level ≥ 1 μg/l. Only one patient had a Cr level ≥ 1 μg/l. That patient’s Cr level was 12 μg/l at 57 months after revision THA for ALTR (and decreased ten-fold from a preoperative Cr of 113 μg/l). Conclusion. At a mean of four years, no patient with a modular dual-mobility construct and ceramic femoral head had elevated Co levels, including seven patients revised specifically for ALTR. While further studies are required, we support the selective use of a modular dual-mobility construct in revision and complex primary THAs for patients at high risk for instability. Cite this article: Bone Joint J 2019;101-B(6 Supple B):57–61