The purpose of this study is to analyze what kind of pattern of change in each posterior femoral condyle allows for a greater degree of flexion after total knee arthroplasty (TKA). The
INTRODUCTION. Computer-aided systems have been developed recently in order to improve the precision of implantation of unicompartmental knee replacement (UKR). Minimal invasive techniques may decrease the surgical trauma related to the prosthesis implantation, but there might be a concern about the potential for a loss of accuracy. Mobile bearing prostheses have been developed to decrease the risk of polyethylene wear, but are technically more demanding. Navigation might help to compensate for these difficulties. We wanted to combine the theoretical advantages of the three different techniques by developing a navigated, minimal invasive, mobile bearing unicompartmental knee prosthesis. MATERIAL AND METHODS. 160 patients have been operated on at our institution with this system. The 81 patients with more than 2 year follow-up have been re-examined. Complications have been recorded. The clinical results have been analyzed according to the Knee Society Scoring System. The subjective results have been analyzed with the Oxford Knee Questionnaire. The accuracy of implantation has been analyzed on post-operative antero-posterior and lateral long leg X-rays. The 2-year survival rate has been calculated. RESULTS. We observed 8 complications related to the implant or the operative technique: 2 cases of meniscus instability (1 revision to TKR, 1 bearing exchange); 2 cases of tibia loosening (revised to TKR), 2 cases of femoral loosening (revised to TKR), 1 case of lateral disease progression (revised to TKR), 1 case of unexplained pain syndrome (revised to TKR). The mean Knee Score was 93 points, 44% had the maximum of 100 points, and only 10% have less than 85 points. The mean pain score was 48 points/50. The mean
Introduction. Patients suffering from finger joint pain or dysfunction due to arthritis and traumatic injury may require arthroplasty and joint replacement. Single-part silicone-based implants remain the material of choice and most widely used option, although reports on their long-term clinical performance are variable. For trauma indications, patients have a high expectation of functionality necessitating the use of materials with high wear resistance and mechanical performance. A new proximal inter phalangeal (PIP) joint designed by Zrinski AG (Wurmlingen, Germany), comprising a self-mating carbon fibre reinforced polyetheretherketone (CFR-PEEK) coupling, may provide a suitable alternative. Here we describe the wear performance of the CFR-PEEK components in a PIP joint wear simulator and subsequent characterisation of the wear particles. Methods. Four proximal and distal PIP components were milled (Zrinski AG) from CFR-PEEK (Invibio Ltd, UK) and subjected to wear testing (Endo Lab ® GmbH, Germany). The test was conducted at 37°C over 5 million cycles in 25% bovine serum (refreshed every 0.5 million cycles). The load was a static force of 63N applied at a frequency of 1Hz with a