Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 238 - 238
1 Sep 2012
Ishii Y Noguchi H Takeda M Sato J
Full Access

The purpose of this study is to analyze what kind of pattern of change in each posterior femoral condyle allows for a greater degree of flexion after total knee arthroplasty (TKA). The flexion angle was assessed pre-operatively, and at 12 months after the surgery in 98 patients (106 knees) who underwent consecutive TKA. We used a quantitative 3 dimensional technique using computed tomography for the assessment of changes in both the medial and lateral femoral condylar offset. There were no significant correlation between changes of each posterior condylar offset and post flexion angle (medial condyle; R=−0.038, p=0.70, lateral condyle; R=−0.090, p=0.36). There were no significant differences between changing patterns and increase rate of flexion (p=0.443). Additionally there were no significant differences between changing patterns and increase of flexion angle (p=0.593). Changes of each posterior condylar offset were no correlation to knee flexion after TKA in the current design prosthesis


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 271 - 271
1 Sep 2012
Jenny J Saussac F Louis P
Full Access

INTRODUCTION. Computer-aided systems have been developed recently in order to improve the precision of implantation of unicompartmental knee replacement (UKR). Minimal invasive techniques may decrease the surgical trauma related to the prosthesis implantation, but there might be a concern about the potential for a loss of accuracy. Mobile bearing prostheses have been developed to decrease the risk of polyethylene wear, but are technically more demanding. Navigation might help to compensate for these difficulties. We wanted to combine the theoretical advantages of the three different techniques by developing a navigated, minimal invasive, mobile bearing unicompartmental knee prosthesis. MATERIAL AND METHODS. 160 patients have been operated on at our institution with this system. The 81 patients with more than 2 year follow-up have been re-examined. Complications have been recorded. The clinical results have been analyzed according to the Knee Society Scoring System. The subjective results have been analyzed with the Oxford Knee Questionnaire. The accuracy of implantation has been analyzed on post-operative antero-posterior and lateral long leg X-rays. The 2-year survival rate has been calculated. RESULTS. We observed 8 complications related to the implant or the operative technique: 2 cases of meniscus instability (1 revision to TKR, 1 bearing exchange); 2 cases of tibia loosening (revised to TKR), 2 cases of femoral loosening (revised to TKR), 1 case of lateral disease progression (revised to TKR), 1 case of unexplained pain syndrome (revised to TKR). The mean Knee Score was 93 points, 44% had the maximum of 100 points, and only 10% have less than 85 points. The mean pain score was 48 points/50. The mean flexion angle was 128°, and 60% had at least 130° of knee flexion. The mean Function Score was 97 points, 84% have the maximum of 100 points, and only 5% had less than 85 points. The mean Oxford Knee Questionnaire score was 19 points (best result: 12 points, worst result: 60 points). Expected limb axis correction was obtained in 77% of the cases. 62% of the cases had an optimally implanted prosthesis for all studied criteria. The 2-year survival rate was 97%. DISCUSSION. Most of the revision cases were related to technical difficulties during the development phase. Fixation of the implant has been improved, and some imprecise steps of the software have been corrected. Since these changes occurred, no severe early complication related to implant or software has been observed. The current implant is considered reliable, and the current minimal invasive navigated technique is considered reliable as well


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 430 - 430
1 Sep 2012
Brady M Sinz I Kinbrum A Briscoe A
Full Access

Introduction. Patients suffering from finger joint pain or dysfunction due to arthritis and traumatic injury may require arthroplasty and joint replacement. Single-part silicone-based implants remain the material of choice and most widely used option, although reports on their long-term clinical performance are variable. For trauma indications, patients have a high expectation of functionality necessitating the use of materials with high wear resistance and mechanical performance. A new proximal inter phalangeal (PIP) joint designed by Zrinski AG (Wurmlingen, Germany), comprising a self-mating carbon fibre reinforced polyetheretherketone (CFR-PEEK) coupling, may provide a suitable alternative. Here we describe the wear performance of the CFR-PEEK components in a PIP joint wear simulator and subsequent characterisation of the wear particles. Methods. Four proximal and distal PIP components were milled (Zrinski AG) from CFR-PEEK (Invibio Ltd, UK) and subjected to wear testing (Endo Lab ® GmbH, Germany). The test was conducted at 37°C over 5 million cycles in 25% bovine serum (refreshed every 0.5 million cycles). The load was a static force of 63N applied at a frequency of 1Hz with a flexion/extension angle of ±40°. Wear rate was determined by mass loss from each component. Pooled serum samples from the wear simulator were subjected to protein digest and the remaining particulate debris isolated by serial filtration through 10μm, 1μm and 0.1μm filters. Particle size and morphology was subsequently determined by scanning electron microscopy (SEM) (Continuum Blue, UK). Results. Both components exhibited high resistance to wear, with the proximal component resulting in a wear rate of 0.09mg/million cycles, whilst that of the distal component was 0.07mg/million cycles. Particle analysis revealed that the majority of debris generated during the wearing in phase (0.5 million cycles) was <0.5μm in diameter. During the steady state phase (0.5–3 million cycles) a large peak in particle size was observed in the 2μm diameter range, whilst in the latter stage (3–5 million cycles) peaks in particle size were seen at 0.4μm and 2μm. During each stage, both the particle count and aspect ratio remained relatively unchanged. Conclusion. Under these test conditions the CFR-PEEK coupling demonstrated a linear and consistently low wear rate over the 5 million cycle test period, with the majority of particles generated being <2μm in diameter. The low wear rate and biocompatibility demonstrated by CFR-PEEK suggests it is a suitable alternative to silicone in PIP joint prostheses. Acknowledgements. The authors would like to thank Zrinski AG, Christian Kaddick at EndoLab GmbH for the wear simulator work and Mark Yeoman at Continuum Blue Ltd. for particle analysis