25–40% of unicompartmental knee replacement (UKR) revisions are performed for unexplained pain possibly secondary to elevated proximal tibial bone strain. This study investigates the effect of tibial component metal backing and polyethylene thickness on cancellous bone strain in a
We investigated the static and cyclical strength of parallel and angulated locking plate screws using rigid polyurethane foam (0.32 g/cm3) and bovine cancellous bone blocks. Custom-made stainless steel plates with two conically threaded screw holes with different angulations (parallel, 10° and 20° divergent) and 5 mm self-tapping locking screws underwent pull-out and cyclical pull and bending tests. The bovine cancellous blocks were only subjected to static pull-out testing. We also performed finite element analysis for the static pull-out test of the parallel and 20° configurations. In both the foam model and the bovine cancellous bone we found the significantly highest pull-out force for the parallel constructs. In the finite element analysis there was a 47% more damage in the 20° divergent constructs than in the parallel configuration. Under cyclical loading, the mean number of cycles to failure was significantly higher for the parallel group, followed by the 10° and 20° divergent configurations. In our laboratory setting we clearly showed the biomechanical disadvantage of a diverging locking screw angle under static and cyclical loading.
It is becoming increasingly common for a patient
to have ipsilateral hip and knee replacements. The inter-prosthetic (IP)
distance, the distance between the tips of hip and knee prostheses,
has been thought to be associated with an increased risk of IP fracture.
Small gap distances are generally assumed to act as stress risers,
although there is no real biomechanical evidence to support this. The purpose of this study was to evaluate the influence of IP
distance, cortical thickness and bone mineral density on the likelihood
of an IP femoral fracture. A total of 18 human femur specimens were randomised into three
groups by bone density and cortical thickness. For each group, a
defined IP distance of 35 mm, 80 mm or 160 mm was created by choosing
the appropriate lengths of component. The maximum fracture strength
was determined using a four-point bending test. The fracture force of all three groups was similar (p = 0.498).
There was a highly significant correlation between the cortical
area and the fracture strength (r = 0.804, p <
0.001), whereas
bone density showed no influence. This study suggests that the IP distance has little influence
on fracture strength in IP femoral fractures: the thickness of the
cortex seems to be the decisive factor. Cite this article:
Because of the contradictory body of evidence related to the
potential benefits of helical blades in trochanteric fracture fixation,
we studied the effect of bone compaction resulting from the insertion
of a proximal femoral nail anti-rotation (PFNA). We developed a subject-specific computational model of a trochanteric
fracture (31-A2 in the AO classification) with lack of medial support
and varied the bone density to account for variability in bone properties
among hip fracture patients.Objectives
Methods