Advertisement for orthosearch.org.uk
Results 1 - 20 of 114
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 52 - 52
4 Apr 2023
García-Rey E Saldaña L
Full Access

Pelvic tilt can vary over time due to aging and the possible appearance of sagittal spine disorders. Cup position in total hip arthroplasty (THA) can be influenced due to these changes. We assessed the evolution of pelvic tilt and cup position after THA and the possible appearance of complications for a minimum follow-up of ten years. 343 patients received a THA between 2006 and 2009. All were diagnosed with primary osteoarthritis and their mean age was 63.3 years (range, 56 to 80). 168 were women and 175 men. 250 had no significant lumbar pathology, 76 had significant lumbar pathology and 16 had lumbar fusion. Radiological analysis included sacro-femoral-pubic (SFP), acetabular abduction (AA) and anteversion cup (AV) angles. Measurements were done pre-operatively and at 6 weeks, and at five and ten years post-operatively. Three measurements were recorded and the mean obtained at all intervals. All radiographs were evaluated by the same author, who was not involved in the surgery. There were nine dislocations: six were solved with closed reduction, and three required cup revision. All the mean angles changed over time; the SFP angle from 59.2º to 60º (p=0.249), the AA angle from 44.5º to 46.8º (p=0.218), and the AV angle from 14.7º to 16.2º (p=0.002). The SFP angle was lower in older patients at all intervals (p<0.001). The SFP angle changed from 63.8 to 60.4º in women and from 59.4º to 59.3º in men, from 58.6º to 59.6º (p=0.012). The SFP angle changed from 62.7º to 60.9º in patients without lumbar pathology, from 58.6º to 57.4º in patients with lumbar pathology, and from 57.0º to 56.4º in patients with a lumbar fusion (p=0.919). The SFP cup angle was higher in patients without lumbar pathology than in the other groups (p<0.001), however, it changed more than in patients with lumbar pathology or fusion at ten years after THA (p=0.04). Posterior pelvic tilt changed with aging, influencing the cup position in patients after a THA. Changes due to lumbar pathology could influence the appearance of complications long-term


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 38 - 38
1 Mar 2021
Vasiljeva K Lunn D Chapman G Redmond A Wang L Thompson J Williams S Wilcox R Jones A
Full Access

Abstract. Objectives. The importance of cup position on the performance of total hip replacements (THR) has been demonstrated in in vitro hip simulator tests and clinically. However, how cup position changes during gait has not been considered and may affect failure scenarios. The aim of this study was to assess dynamic cup version using gait data. Methods. Pelvic movement data for walking for 39 unilateral THR patients was acquired (Leeds Biomedical Research Centre). Patient's elected walking speed was used to group patients into high- and low-functioning (mean speed, 1.36(SD 0.09)ms. −1. and 0.85(SD 0.08)ms. −1. respectively). A computational algorithm (Python3.7) was developed to calculate cup version during gait cycle. Inputs were pelvic angles and initial cup orientation (assumed to be 45° inclination and 7° version, anterior pelvic plane was parallel to radiological frontal plane). Outputs were cup version angles during a gait cycle (101 measurements/cycle). Minimum, maximum and average cup version during gait cycle were measured for each patient. Two-sample t-test (p=0.05) was used to compare groups. Results. Over a gait cycle the mean minimum, maximum and average version angles for the high-functioning group were −4.5(SD 4.4)°, 5.0(SD 4.3)°, 9.5(SD 4.0)° and for low-functioning group 2.0(SD 3.7)°, 6.2(SD 2.9)°, 8.1(SD 3.2)°. There were no significant differences for the minimum, maximum and average version angles between the two groups. Conclusions. The study shows that dynamic acetabular cup version changes substantially during gait and this must be considered clinically and in pre-clinical testing. There was no significant difference between the two groups; however, dynamic cup version was more negative in high-functioning compared to low-functioning patients. Further studies on a larger cohort are required to determine whether patients’ profiles can be stratified to provide enhanced inputs for pre-clinical THR testing. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 9 - 9
1 Dec 2020
Meermans G Kats J Doorn JV Innman M Grammatopoulos G
Full Access

Introduction. In total hip arthroplasty, a high radiographic inclination angle (RI) of the acetabular component has been linked to short- and long-term complications. There are several factors that lead to RI outliers including cup version, pelvic orientation and angle of the cup introducer relative to the floor. The primary aim of this study was to analyse what increases the risk of having a cup with an RI outside the target zone when controlling cup orientation with a digital inclinometer. Methods. In this prospective study, we included 200 consecutive patients undergoing uncemented primary THA in the lateral decubitus position using a posterior approach. Preoperatively, the surgeon determined the target intraoperative inclination (IOI. target. ). The intra-operative inclination of the cup (IOI. cup. ) was measured with the aid of a digital inclinometer after seating of the acetabular component. Anteroposterior pelvic radiographs were made to measure the RI of the acetabular component. The target zones were defined as 30°-45° and 35°-45° of RI. The operative inclination relative to the sagittal plane of the pelvis (OI. math. ) was calculated based on the radiographic inclination and anteversion angle. The difference between two outcome measures was expressed as Δ. Results. The mean RI was 37.9° SD 4.7, there were 12 cases with RI outside the 30°– 45° zone (6%) and 53 outliers (26.5%) with RI outside the 35°-45° zone. The mean absolute ΔIOI. cup. -IOI. target. was 1.2° SD 1.0. The absolute ΔIOI. cup. -IOI. target. was less than 1° in 108 patients (54%), less than 2° in 160 patients (80%), less than 3° in 186 patients (93%), and in 14 patients (7%) the difference was 3°-5°. The mean pelvic motion (ΔOI. math. -IOI. cup. ) was 8.8° SD 3.9 (95% CI 8.2° to 9.3°). The absolute deviation from the mean ΔOI. math. -IOI. cup. , which corresponds with the amount of pelvic motion, was significantly higher in RI outliers compared with non-outliers for both the 30°-45° and 35°-45° inclination zone (7.4° SD 3.3 vs 2.8° SD 2.1 and 4.7° SD 2.8 vs 2.5° SD 2.0 respectively) (p<0.0001). A linear regression analysis demonstrated a strong correlation between ΔOI. math. -IOI. cup. and the RI of the cup (r. 2. =0.70; P<0.0001). A multiple regression was run to predict ΔOI. math. -IOI. cup. from gender, BMI, side and hip circumference. These variables statistically significantly predicted ΔOI. math. -OIa. cup. , F(4, 195) = 19,435, p<0.0001, R2 = 0.285, but only side (p=0.04) and hip circumference (p<0.0001) added statistically significantly to the prediction. Discussion and Conclusion. When using a digital inclinometer 94% of cups had a RI within a 30°-45° zone and 73.5% of cups within a 35°-45° zone using a predefined IOI. target. based on the patient's hip circumference. The difference between the IOI. target. and the IOI. cup. of the acetabular component was less than 3° in 93% and less than 5° in all patients signifying that the surgeons were able to implant the cup close to their chosen intra-operative orientation. Deviation from the mean ΔOI. math. -IOI. cup. was significantly bigger in the RI outliers indicating that RI outliers were caused by more or less than deviation of the sagittal plane of the pelvis at time of cup impaction


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 27 - 27
1 Mar 2021
van Duren B Lamb J Al-Ashqar M Pandit H Brew C
Full Access

The angle of acetabular inclination is an important measurement in total hip replacement (THR) procedures. Determining the acetabular component orientation intra-operatively remains a challenge. An increasing number of innovators have described techniques and devices to achieve it. This paper describes a mechanical inclinometer design to measure intra-operative acetabular cup inclination. Then, the mechanical device is tested to determine its accuracy. The aim was to design an inclinometer to measure inclination without existing instrumentation modification. The device was designed to meet the following criteria: 1. measure inclination with acceptable accuracy (+/− 5o); 2. easy to use intra-operatively (handling & visualization); 3. adaptable and useable with majority of instrumentation kits without modification; 4. sterilizable by all methods; 5. robust/reusable. The prototype device was drafted by computer aided design (CAD) software. Then a prototype was constructed using a 3D printer to establish the final format. The final device was CNC machined from SAE 304 stainless steel. The design uses an eccentrically weighted flywheel mounted on two W16002-2RS ball bearings pressed into symmetrical housing components. The weighted wheel is engraved with calibrated markings relative to its mass centre. Device functioning is dependent on gravity maintaining the weighted wheel in a fixed orientation while the housing can adapt to the calibration allowing for determining the corresponding measurement. The prototype device accuracy was compared to a digital device. A digital protractor was used to create an angle. The mechanical inclinometer (user blinded to digital reading) was used to determine the angle and compared to the digital reading. The accuracy of the device compared to the standard freehand technique was assessed using a saw bone pelvis fixed in a lateral decubitus position. 18 surgeons (6 expert, 6 intermediate, 6 novice) were asked to place an uncemented acetabular cup in a saw bone pelvis to a target of 40 degrees. First freehand then using the inclinometer. The inclination was determined using a custom-built inertial measurement unit with the user blinded to the result. Comparison between the mechanical and digital devices showed that the mechanical device had an average error of −0.2, a standard deviation of 1.5, and range −3.3 to 2.6. The average root mean square error was 1.1 with a standard deviation of 0.9. Comparison of the inclinometer to the freehand technique showed that with the freehand component placement 50% of the surgeons were outside the acceptable range of 35–45 degrees. The use of the inclinometer resulted all participants to achieve placement within the acceptable range. It was noted that expert surgeons were more accurate at achieving the target inclination when compared to less experienced surgeons. This work demonstrates that the design and initial testing of a mechanical inclinometer is suitable for use in determining the acetabular cup inclination in THR. Experimental testing showed that the device is accurate to within acceptable limits and reliably improved the accuracy of uncemented cup implantation in all surgeons


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_8 | Pages 5 - 5
1 Apr 2017
Alshuhri A Miles A Cunningham J
Full Access

Introduction. Aseptic loosening of the acetabular cup in total hip replacement (THR) remains a major problem. Current diagnostic imaging techniques are ineffective at detecting early loosening, especially for the acetabular component. The aim of this preliminary study was to assess the viability of using a vibration analysis technique to accurately detect acetabular component loosening. Methods. A simplified acetabular model was constructed using a Sawbones foam block into which an acetabular cup was fitted. Different levels of loosening were simulated by the interposition of thin layer of silicon between the acetabular component and the Sawbones block. This included a simulation of a secure (stable) fixation and various combinations of cup zone loosening. A constant amplitude sinusoidal excitation with a sweep range of 100–1500 Hz was used. Output vibration from the model was measured using an accelerometer and an ultrasound probe. Loosening was determined from output signal features such as the number and relative strength of the observed harmonic frequencies. Results. Both measurement methods were capable of measuring the output vibration. Preliminary findings show different patterns in the output signal spectra were visible when comparing the stable cup with the 1mm of simulated spherical loosening at driving frequencies 1050 Hz, 1100 Hz and 1150 Hz (p < 0.05) using the accelerometer, whereas for ultrasound at frequencies 950 Hz and 1350 Hz (p < 0.05). Conclusions. Experimental testing showed that vibration analysis could be used as a potential detection method for acetabular cup component loosening using either an accelerometer or ultrasound probe to detect the vibration. However, the capacity of ultrasound to overcome the attenuating effect of the surrounding soft tissues and its high signal to noise ratio suggest it has the best potential for clinical use


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 185 - 185
1 Jul 2014
Amirouche F Solitro G Gonzalez M
Full Access

Summary Statement. A FEA model built from CT-data of frozen cadaver has been validated and used for under-reaming experiments. 1 mm under-reaming can provide contact surface and micromotions that are acceptable and within the clinical relevance without high impact force. Introduction. Long-term cup fixation and stability in total hip arthroplasty (THA) is directly related to the bone ingrowths between the porous cup and the acetabulum. To achieve the initial cup setting, 1 mm of under reaming is becoming the gold standard for cementless cup and what is at stake is usually the actual contact between cup and acetabulum wall. During impact and cup placement, friction forces are generated from the “not permanent” deformations of the acetabular wall that are translated into a gap between the reamed bone and the cup. Clinically the surgeon objective is to have the gap extended to a limited portion of the cup in order to improve bone ingrowth. Hence, the need arises from examining this cup bone stability interface by examining the selected “under reaming” conditions, the surface of contact between the acetabular cup and the bone and its relation to the impact force resulting from the hammering of the cup. Patients & Methods. A validated finite element model built from CT data of fresh frozen hip cadavers has been used for under-reaming mechanically testing experiment. The model was constrained at the sacral and pubic joints to mimic the exact fixation and potting of the pelvis used for testing, and an “impactor” model was used to force the cup into the acetabular reamed socket for both 1 and 2 mm under reaming conditions of the selected cup sizes. Three impact conditions were simulated by imposing cup displacements equivalent to 80, 100 and 120% of the initial distance between the cup apex and the bone. The corresponding reactions forces were evaluated as ideal insertion forces. After the loading phase, a relaxing phase was defined by the removal of load to determine the equilibrium position between the friction forces and the elastic deformation of the actabulum bone. In our last phase, the cup is loaded with a 1500N along the femoral mechanical axis following the same loading conditions of our cup-bone interface experimental setup. Results. The value of under-reaming plays a significant role in the hammering force due to cup placement and has a high correlation with the surface in contact in all cases of implantation, as well as the final stability of the cup throughout loading. When comparing the 2 mm with 1 mm of bone under-reaming we found that the higher degree of under-reaming resulted in slightly greater surface area of contact between the cup and bone as well as reduced micromotion at loading up to 1500 N. However, the impact force requirements for 2mm under reaming was found to be much higher in all three cases investigated. Discussion/Conclusion. Our results indicate that 1 mm under reaming can provide contact surface and micromotions that are both acceptable and within the clinical relevance of cup bone stability without the need of high impact force needed to insert the cup to its desired depth. High insertion forces may lead or cause risk of fracture


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_3 | Pages 14 - 14
1 Apr 2018
Teoh KH Whitham R Golding D Lee PYF Evans A
Full Access

Background. The R3 cementless acetabular system (Smith & Nephew, Memphis, Tennessee, United States) is a modular titanium shell with an asymmetric porous titanium powder coating. It supports cross-linked polyethylene, metal and ceramic liners with several options for the femoral head component. The R3 cup was first marketed in Australia and Europe in 2007. Two recent papers have shown high failure rates of the MoM R3 system with up to 24% (Dramis et al 2014, Hothi et al 2015). There are currently no medium term clinical papers on the R3 acetabular cup. Objectives. The aim of the study is to review our results of the R3 acetabular cup with a minimum of 5 year follow up. Study Design & Methods. Patients who were implanted with the R3 acetabular cup were identified from our centre”s arthroplasty database. Our centre started implanting the R3 acetabular cup in August 2009. For this study, we only included patients with a minimum of 5 year follow up (until June 2011). Over this time period, 293 consecutive THAs were performed in 286 patients, of which 7 were bilateral staged total hip arthroplasties. The primary outcome was revision. The secondary outcomes were the Oxford hip scores and radiographic evaluation. Results. The mean age of the patients was 69.4 years (range 20–100 years). There were 117 males and 169 females in our series. The majority of the total hip arthroplasties in our series were cementless (n=283, 97%) and the rest were hybrid (n=10, 3%). The articulation bearings were as follows: ceramic on ceramic (n=167; 57%), Ceramic on Poly XLPE (n=97; 33%), Oxinium-Poly XLPE (n=19; 6.5%), stainless steel- Poly XLXE (n=10; 3.5%). The mean pre-operative Oxford Hip Score was 23 (range 10–34) and the mean Oxford Hip Score was 40 (range 33–48) at the final follow-up. Radiological evaluation showed an excellent ARA-score in all patients at five years. None of the R3 cups showed osteolysis at final follow up. There were 3 revisions in our series, of which two R3 cup were revised. The risk of revision was 0.28% at 5 years. Using Weibull analysis, it gives a 10-year estimate of 98.8% survival for the R3 cup (95%CI 95.0 to 99.6). Conclusions. Our experience at a district general hospital using the R3 acetabular system with conventional bearings showed high survivorship and is consistent with the allocated Orthopaedic Data Evaluation Panel (ODEP) rating of 5A* as rated in 2015 in the United Kingdom


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_3 | Pages 9 - 9
1 Apr 2018
Garcia-Rey E Carbonell R Cordero J Gomez-Barrena E
Full Access

Introduction. Durable bone fixation of uncemented porous-coated acetabular cups can be observed at a long-term, however, polyethylene (PE) wear and osteolysis may affect survivorship. Accurate wear measurements correlated with clinical data may offer unique research information of clinical interest about this highly debated issue. Objetive. We assessed the clinical and radiological outcome of a single uncemented total hip replacement (THR) system after twenty years analysing polyethylene wear and the appearance of osteolysis. Materials and Methods. 82 hips implanted between 1992 and 1995 were prospectively evaluated. The mean follow-up was 20.6 years (range, 18 to 23). A hemispherical porous-coated acetabular cup matched to a proximally hydroxyapatite-coated anatomic stem and a 28 mm standard PE liner, sterilised by gamma irradiation in air, was used in all hips. Radiological position and the possible appearance of loosening and osteolysis were recorded over time. Penetration of the prosthetic head into the liner was measured by the Roentgen Monographic Analysis (ROMAN) Tool at 6 weeks, 6 months, one year and yearly thereafter. Results. Six cups were revised due to wear and four due to late dislocation. All cups were radiographically well-fixed and all stems showed radiographic ingrowth. Six un-revised hips showed osteolysis on the acetabular side and two on the proximal femoral side. Creep at one year was 0.30 (±0.23) mm. Mean total femoral head penetration was 1.23 mm at 10 years, 1.52 mm at 15 years and 1.92 mm at 23 years. Overall mean wear was 0.12 (± 0.1) mm/year and 0.09 (±0.06) mm/year after the creep period. Mean wear was 0.08 (± 0.06) mm/year in hips without osteolysis and 0.14 (±0.03) mm/year in revised hips or with osteolysis (p<0.001). Conclusions. Although continued durable fixation can be observed with a porous-coated cups and a proximally hydroxyapatite-coated anatomic stem, true wear continues to increase at a constant rate over time. PE wear remains as the main reason for revision surgery and osteolysis in uncemented THR and does not stop after twenty years


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_2 | Pages 64 - 64
1 Jan 2017
Pereira J Ramos A Completo A
Full Access

Positioning of the hip resurfacing is crucial for its long term survival and is critical in young patients for some reasons; manly increase the wear in the components and change the load distribution. THR have increased in the last years, mainly in young patients between 45 to 59 years old. The resurfacing solution is indicated for young patients with good bone quality. A long term solution is required for these patients to prevent hip revision. The resurfacing prosthesis Birmingham Hip Resurfacing (BHR) was analyzed in the present study by in vitro experimental studies. This gives indications for surgeons when placing the acetabular cup. One synthetic left model of composite femur (Sawbones®, model 3403), which replicates the cadaveric femur, and four composite pelvic bones (Sawbones®, model 3405), were used to fix the commercial models of Hip resurfacing (Birmingham model). The resurfacing size was chosen according to the head size of femurs with 48 mm head diameter and a cup with 58 mm. They were introduced by an experimented surgeon with instrumental of prosthesis. The cup is a press fit system and the hip component was cemented using bone cement Simplex, Stryker Corp. The acetabular cup was analyzed in 4 orientations; in anteverion with 15º and 20°; and in inclination 40 and 45°. Combinations of these were also considered. The experimental set-up was applied according to a system previously established by Ramos et al. (2013) in the anatomic position. The femur rotates distally and the Pelvic moves vertically as model changes, such that the same boundary conditions are satisfied. This system allows compensating motions of the acetabular cup orientation. A vertical load of 1700 N was applied on all cases, which have resulted in joint reaction force of 2.4 kN. The femur and iliac bone was instrumented with rosettes. 5 repetitions at each position were conducted. When the femur was instrumented with three rosettes in medial, anterior and posterior aspect, the maximum strain magnitude was observed in the medial aspect of femur with a minimum principal strain of −2070µε for 45° inclination and 20° of anterversion. The pubic region was found most critical region after instrumenting the Iliac bone with four rosettes, with a minimum principal strain around −2500µε (rosette 1), for the 45° inclination and 20° of anterversion. We have observed the great influence of the inclination on the strain distribution, changing its magnitude from compression to traction in different bone regions. The minimum principal strain is more critical in medial aspect of the femur and the influence of strain is about 7% when orientation and inclination change. The maximum influence was observed in the anterior aspect, where the anteversion presents a significant influence. The results show the interaction between inclination and anterversion in all aspects, being observed lower values in lower angles. The orientation of the acetabular cup significantly influences the strain distribution on the iliac surface. Besides, as anterversion increases, more strains are induced, mainly in the region of iliac body (rosette 3)


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVI | Pages 93 - 93
1 Aug 2012
Clarke S Phillips A
Full Access

Metal on metal press-fit acetabular cups are the worst performing acetabular cup type with severe failure consequences compared to cups made from more inert materials such as polyethylene or ceramic. The cause of failure of these cup types is widely acknowledged to be multi-factorial, therefore creating a complex scenario for analysis through clinical studies. A factorial analysis has been carried out using an experimentally validated finite element analysis to investigate the relative influence of four input factors associated with acetabular cup implantation on output parameters indicating potential failure of the implantation. These input factors were: cup material stiffness; cup inclination; cup version; cup seating; and level of press-fit. The output parameter failure indicators were: wear; tensile strains in the underlying bone; bone remodelling; and cup-bone micromotions. The factorial analysis concluded that the most significant influence was that of cup inclination on wear, and the second most significant was the influence of the level of press-fit on bone remodelling at the acetabular rim. Significant influence was also observed between version angle and wear, and cup-seating and micro-motion. The results demonstrated the clear multi-factorial nature of implant failure and highlighted the importance of correct implant positioning and fit


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_3 | Pages 42 - 42
1 Apr 2018
Western L Logishetty K Morgan R Cobb J Auvinet E
Full Access

Background. Complications such as dislocations, impingement and early wear following total hip arthroplasty (THA) increase with acetabular cup implant malorientation. These errors are more common with low-volume centres or in novice hands. Currently, this skill is most commonly taught during real surgery with an expert trainer, but simulated training may offer a safer and more accessible solution. This study investigated if a novel MicronTracker® enhanced Microsoft HoloLens® augmented reality (EAR) headset was as effective as one-on-one expert surgeon (ES) training for teaching novice surgeons hip cup orientation skill. Methods. Twenty-four medical students were randomly assigned to EAR or ES training groups. Participants used a modified sawbone/foam pelvis model for hip cup orientation simulation. A validated EAR headset measured the orientation of acetabular cup implants and displayed this in the participant”s field of view. The system calculated the difference between planned and achieved orientation as a solid-angle error. Six different inclination and anteversion combinations, related to hypothetical patient-specific anatomy, were used as target orientations. Learning curves were measured over four sessions, each one week apart. Error in orientations of non-taught angles and during a concealed pelvic tilt were measured to assess translation of skills. A post-test questionnaire was used for qualitative analysis of procedure understanding and participant experience. Results. Novice surgeons of similar experience in both groups performed with a similar error prior to training (ES: 15.7°±6.9°, EAR: 14.2°±7.1°, p>0.05). During training, EAR participants were guided to significantly better orientation errors than ES (ES: 6.0°±3.4°, EAR: 1.1°±0.9°, p<0.001). After four training sessions, the orientation error in both groups significantly reduced (ES: 15.7°±6.9° to 8.2°±4.6°, p<0.001; EAR: 14.2°±7.0° to 9.6°±5.7°, p<0.001). Participants in both groups achieved the same levels of orientation accuracy in non-taught angles and when the pelvis was tilted (p>0.05). In post-training evaluation, participants expressed a preference towards ES rather than EAR for learning orientation skills and related visuospatial and procedure-specific skills. 79% of participants indicated EAR simulator training and ES in combination would be their preferred training method. Discussion. A novel head-mounted EAR platform delivered training to novice surgeons more accurately than an expert surgeon. Both EAR and ES enabled novices to acquire and retain skills on a learning curve to orientate the implant. These skills were translated to non-taught orientations and in the presence of a pelvic tilt. Conclusions. Augmented-reality simulators may be a feasible and valid method for teaching novice surgeon”s visuospatial skills for THA on a learning curve, to compliment traditional intraoperative training


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_4 | Pages 49 - 49
1 Apr 2018
Morgan R Logishetty K Western L Cobb J Auvinet E
Full Access

Background. Trust in the validity of a measurement tool is critical to its function in both clinical and educational settings. Acetabular cup malposition within total hip arthroplasty (THA) can lead to increased dislocation rates, impingement and increased wear as a result of edge loading. We have developed a THA simulator incorporating a foam/Sawbone pelvis model with a modified Microsoft HoloLens® augmented reality (AR) headset. We aimed to measure the trueness, precision, reliability and reproducibility of this platform for translating spatial measurements of acetabular cup orientation to angular values before developing it as a training tool. Methods. A MicronTracker® stereoscopic camera was integrated onto a HoloLens® AR system. Trueness and precision values were obtained through comparison of the AR system measurements to a gold-standard motion capture system”s (OptiTrack®) measurements for acetabular cup orientation on a benchtop trainer, in six clinically relevant pairs of anteversion and inclination angles. Four surgeons performed these six orientations, and repeated each orientation twice. Pearson”s coefficients and Bland-Altman plots were computed to assess correlation and agreement between the AR and Motion Capture systems. Intraclass correlation coefficients (ICC) were calculated to evaluate the degree of repeatability and reproducibility of the AR system by comparing repeated tasks and between surgeons, respectively. Results. The trueness of the AR system was 0.24° (95% CI limit 0.92°) for inclination and 0.90° (95% CI limit 1.8°) for anteversion. Precision was 0.46° for inclination and 0.91° for anteversion. There was significant correlation between the two methods for both inclination (r = 0.996, p<0.001) and anteversion (r = 0.974, p<0.001). Repeatability for the AR system was 0.995 for inclination and 0.989 for anteversion. Reproducibility for the AR system was 0.999 for inclination and 0.995 for anteversion. Conclusion. Measurements obtained from the enhanced HoloLens® AR system were accurate and precise in regards to determining angular measurements of acetabular cup orientation. They exceeded those of currently used methods of cup angle determination such as CT and computer-assisted navigation. Measurements obtained were also highly repeatable and reproducible, therefore this platform is accurately validated for use in a THA training simulator


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 137 - 137
1 Jul 2014
Shareghi B Kärrholm J
Full Access

Summary. Comparison of accuracy and precision in measuring wear using 4 commonly used uncemented cup designs shows small differences in mean and data scatter for marker and model-based RSA. Introduction. The disadvantage with conventional RSA is that implant has to be supplied with tantalum markers, which may be difficult to visualise. This problem can be resolved with model-based RSA, but it is uncertain if this method has the same precision as marker-based RSA to measure wear. We compared these methods and studied different prosthesis geometries represented by four different uncemented cup designs (Trilogy, TMT-Trabecular Metal, Zimmer, Warsaw, USA, Ringloc, Biomet, Inc., Warsaw, Indiana, and ABG, Howmedica International, Staines, UK). Patients and Methods. Stereoradiographs of 75 patients (19 Trilogy, 17 TMT, 20 Ringloc, 19 ABG) were exposed postoperatively (2 examinations) and after 2 years. The patients were selected from prospective clinical studies. During operation tantalum markers had been inserted into the liner in all cases. The measurements and analysis of all radiographs were performed with UmRSA Digital Measure and UmRSA Analysis 6.0. We used the differences between the postoperative double-examinations to compute the precision for the two methods and for the different implant designs. The proximal and the total (vectorial sum of medial/lateral, proximal/distal and anterior posterior) femoral head penetration up to 2 years were compared. Results. The mean differences and the standard deviation of mean obtained from calculations between the double examinations in the total material did not differ between the 2 methods for any of the designs studied. The mean values and SD for marker and model-based RSA were −0, 00 mm ± 0.09 mm and 0.02 mm ± 0.08 mm, respectively (p>0.05). The comparison between Classical marker-based RSA and Model-based RSA in measuring wear up to 2 years did not showed any statistically significant differences for the Trilogy, TMT and ABG cups (p>0.05). However the mean difference of the postoperative double examinations were slightly higher for the Ringloc design (p=0, 02) and the data scatter (SD) at 2 years was higher (p=0,004) with use of model-based RSA. Conclusions. We found small differences between marker and model-based RSA for measurements of proximal and total wear (penetration). In 3 of the 4 cup designs studied the data scatter was about equal for the 2 methods. In the 4. th. design (Ringloc) the data scatter was higher when model-based RSA was used


The Journal of Bone & Joint Surgery British Volume
Vol. 85-B, Issue 3 | Pages 440 - 447
1 Apr 2003
Røkkum M Reigstad A Johansson CB Albrektsson T

Ten acetabular cups coated with hydroxyapatite (HA) had originally been inserted in five primary and five revision total hip replacements. The thickness of the HA was 155 ± 35 μm. The cups, which were well-fixed, were retrieved, with their adherent tissue, at reoperation after 0.3 to 5.8 years because of infection (five hips), wear of polyethylene (three hips), and instability (two hips). Undecalcified sections showed a direct contact between bone and osteoid-like tissue which had formed directly onto the HA coating. The area within the threads and their mirror images, as well as the implant-tissue interfaces consisted of similar amounts of bone and soft tissue. Degradation of HA was seen in all hips. The mean thickness of the remaining HA coating was 97 μm (95% CI 94 to 101). The metal interface comprised 66% HA. The HA-tissue interface contained more bone than soft tissue (p = 0.001), whereas the metal-tissue interface included more soft tissue than bone (p = 0.019). Soft tissue at the implant interface and poor replacement of HA by bone may interfere with long-term fixation


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 165 - 165
1 Jul 2014
Acker A Fischer J Aminian K Martin E Jolles B
Full Access

Summary Statment. The dual-mobility cup seems to bring more stability without changing the gait pattern. Introduction. Dislocations and instability are among the worst complications after THA in elderly patient. Dual mobility cups seem to lower these risks. To our knowledge no study performed a gait analysis of dual cup in this group. Methods. Our team implanted 52 dual mobility cups (Gyros, de Puy J&J Corporation) before 2007. 7 hip revisions and 15 primary hips were reviewed in 20 patients. The mean age at the review was 79.8 years old. 15 died or were mentally too disabled to perform a gait analysis. 5 didn't give consent for a clinical study and 8 were not localizable. We performed a gait analysis using a non-invasive miniature sensors device (PhysilogTM) when patients walked freely on a flat ground. We compared our results to a control group of frail eldery patients of the same age who didn't sufferd of orthopedic condition and to a group of patient with a conventional THA from our institution and to the literature. The WOMAC and Harris Hip scores were also computed. Results. None of the 22 hips faced dislocation. The gait analysis showed good results that were superior to those of the control group of frail elderly and comparable to those of conventional THA. The cadence was of 100,3 steps/min, the double stance of 23,3%, the stance of 61,6%, the stride of 1,13 meters and the walking speed of 0,96 m/s. The mean HHS and WOMAC were 87,6 (51–100) and 11,3 (0–34). Conclusion. Our results at 5 years compared favorably with the current litterature. The increase of stability didn't impared the walking performances


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXVIII | Pages 20 - 20
1 Jun 2012
Holloway N Drury C Ritchie I
Full Access

Metal-on-metal (MOM) hip arthroplasty, including resurfacing, has become the subject of recent research and debate. There is the perceived benefit of improved wear rates of bearing surfaces leading to superior durability and performance of these types of implant. An associated feature of MOM bearing surfaces is the generation of metal ions. These can have local and systemic cytotoxic effects. An immunoloigical response has been suggested, however, metal wear debris may cause direct damage to cellular DNA. Studies have shown that release of these ions is related to bearing diameter and component alignment. However, little is known about the relationship between metal ion levels and implant survivorship. The MHRA has published guidelines on the follow-up of patients with MOM implants including measurement of serum ion levels and cross sectional imaging. Between February 2001 and November 2009, 135 patients (164 hips) had MOM resurfacing arthroplasty at our institution. We report a retrospective analysis of the data generated by review of these patients. Of the 135 patients, 91 were identified for clinical review. Each patient had serum metal ion levels measured, plain AP radiographs of the pelvis examined and, in the presence of raised metal ions, a Metal Artefact Reduction Sequence (MARS) MRI performed. 27 patients (35 hips) had raised metal ion levels (Cobalt and Chromium). Patients with raised metal ion levels had a mean acetabular cup inclination of 52.7 degrees compared with a mean inclination of 48.6 degrees in patients with normal ion levels (p<0.05). MARS MRI in the raised ion group revealed 9 patients with appearances suggestive of ALVAL. A number of these patients had hip revision surgery with the remainder awaiting potential revision. These findings reflect current evidence suggesting a relationship between sub-optimal component position and raised metal ion levels and an increased rate of ALVAL


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 148 - 148
4 Apr 2023
Jørgensen P Kaptein B Søballe K Jakobsen S Stilling M
Full Access

Dual mobility hip arthroplasty utilizes a freely rotating polyethylene liner to protect against dislocation. As liner motion has not been confirmed in vivo, we investigated the liner kinematics in vivo using dynamic radiostereometry. 16 patients with Anatomical Dual Mobility acetabular components were included. Markers were implanted in the liners using a drill guide. Static RSA recordings and patient reported outcome measures were obtained at post-op and 1-year follow-up. Dynamic RSA recordings were obtained at 1-year follow-up during a passive hip movement: abduction/external rotation, adduction/internal rotation (modified FABER-FADIR), to end-range and at 45° hip flexion. Liner- and neck movements were described as anteversion, inclination and rotation. Liner movement during modified FABER-FADIR was detected in 12 of 16 patients. Median (range) absolute liner movements were: anteversion 10° (5–20), inclination 6° (2–12), and rotation 11° (5–48) relative to the cup. Median absolute changes in the resulting liner/neck angle (small articulation) was 28° (12–46) and liner/cup angle (larger articulation) was 6° (4–21). Static RSA showed changes in median (range) liner anteversion from 7° (-12–23) postoperatively to 10° (-3–16) at 1-year follow-up and inclination from 42 (35–66) postoperatively to 59 (46–80) at 1-year follow-up. Liner/neck contact was associated with high initial liner anteversion (p=0.01). The polyethylene liner moves over time. One year after surgery the liner can move with or without liner/neck contact. The majority of movement is in the smaller articulation between head and liner


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 98 - 98
2 Jan 2024
Mehta S Goel A Mahajan U Reddy N Bhaskar D
Full Access

Dislocation post THA confers a higher risk of re-dislocation (Kotwal et al, 2009). The dual mobility (DM) cup design (1974) was aimed at improving the stability by increasing the femoral head to neck ratio (Cuthbert et al., 2019) combining the ideas of low friction arthroplasty with increased jump distance associated with a big head arthroplasty. Understand the dislocation rates, rates of aseptic loosening, infection rate and revision rates between the 2 types of constructs to provide current and up-to date evidence. Medline, pubmed, embase and Cochrane databases were used based on PRISMA guidelines. RevMan software was used for the meta-analysis. Studies (English literature) which used DM construct with atleast 6 months follow-up used as intervention and non DM construct as control were included. 2 independent reviewers conducted the review with a third reviewer in case of difference in opinion regarding eligibility. Primary outcome was dislocation rate and secondary outcome was rate of revision. 564 articles identified out of which 44 articles were screened for full texts and eventually 4 systematic review articles found eligible for the study. Thus, study became a review of systematic reviews. From the 4 systematic reviews, another 35 studies were identified for data extraction and 13 papers were used for meta-analysis. Systematic reviews evaluated, projected an average follow up of 6-8 years with significantly lower dislocation rates for DM cups. The total number of patients undergoing DM cup primary THA were 30,559 with an average age 71 years while the control group consisted of 218,834 patients with an average age of 69 years. DM group had lower rate of dislocation (p < 0.00001), total lower rate of cup revision (p < 0.00001, higher incidence of fracture (p>0.05). DM THA is a viable alternative for conventional THA. The long-term results of DM cups in primary THA need to be further evaluated using high quality prospective studies and RCTs


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 1 - 1
17 Nov 2023
Mehta S Goel A Mahajan U Reddy R Bhaskar D
Full Access

Abstract. Introduction. Dislocation post THA confers a higher risk of re-dislocation (Kotwal et al, 2009). The dual mobility (DM) cup design (1974) was aimed at improving the stability by increasing the femoral head to neck ratio (Cuthbert et al., 2019) combining the ideas of low friction arthroplasty with increased jump distance associated with a big head arthroplasty. Aims. Understand the dislocation rates, rates of aseptic loosening, infection rate and revision rates between the 2 types of constructs to provide current and up-to date evidence. Methods. Medline, pubmed, embase and Cochrane databases were used based on PRISMA guidelines. RevMan software was used for the meta-analysis. Studies (English literature) which used DM construct with atleast 6 months follow-up used as intervention and non DM construct as control were included. 2 independent reviewers conducted the review with a third reviewer in case of difference in opinion regarding eligibility. Primary outcome was dislocation rate and secondary outcome was rate of revision. Results. 564 articles identified out of which 44 articles were screened for full texts and eventually 4 systematic review articles found eligible for the study. Thus, study became a review of systematic reviews. From the 4 systematic reviews, another 35 studies were identified for data extraction and 13 papers were used for meta-analysis. Systematic reviews evaluated, projected an average follow up of 6–8 years with significantly lower dislocation rates for DM cups. The total number of patients undergoing DM cup primary THA were 30,559 with an average age 71 years while the control group consisted of 218,834 patients with an average age of 69 years. DM group had lower rate of dislocation (p < 0.00001), total lower rate of cup revision (p < 0.00001, higher incidence of fracture (p>0.05). Conclusion. DM THA is a viable alternative for conventional THA. The long-term results of DM cups in primary THA need to be further evaluated using high quality prospective studies and RCTs. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 144 - 144
1 Nov 2021
García-Rey E Saldaña-Quero L Sedel L
Full Access

Introduction and Objective. Despite pure alumina have shown excellent long-term results in patients undergoing total hip arthroplasty (THA), alumina matrix composites (AMCs) composed of alumina and zirconium oxide are more commonly used. There are no comparative studies between these two different ceramics. We performed a retrospective case-control study to compare results and associated complications between AMC from two manufacturers and those with pure alumina from another manufacturer. Materials and Methods. 480 uncemented THAs with ceramic on ceramic (CoC) bearing surfaces (288 men and 192 women; mean age of 54.1 ± 12.4 years), were implanted from 2010 to 2015. Group 1: 281 THAs with pure alumina; Group 2A: 142 with AMC bearing in a trabecular titanium cup. Group 2B: 57 hips with AMC bearing with a porous-coated cup. Results. The mean follow-up was 7.3 years. There was one late infection in group 1, eight dislocations, three in group 1 (1.1%), three in group 2A (2.1%), all with a 36 mm femoral head, and two in group 2C (3.5%). Liner malseating was found in one hip in group 1, and in five hips in group 2C, of these, there were four liner fractures (7.0%). Four cups were revised for iliopsoas impingement (three in group 1 and one in group 2B). Two cups were revised for aseptic loosening, one in group 1 and one in group 2A, and four revised femoral stems in group 2A, three for subsidence and another for postoperative periprosthetic B. 2. fracture. The mean preoperative Harris Hip Score was 48.6 ± 3.3 in the whole series and 93.9 ± 7.2 at the end of follow-up. The survival rate of revision for any cause was 98.2% (95% Confidence Interval: 96.6–99.8) at ten years for group 1, 95.8% (95% CI: 92.1–99.5) for group 2A, and 91.1% (95% CI: 83.7–98.5) for group 2B (log-rank 0.030). Conclusions. Outcome of uncemented CoC THA in young patients was satisfactory at mid-term in all three groups. However, liner fractures were frequent in group 2B. All dislocated hips in group 2A had a 36 mm femoral head diameter, and revision due to any cause was less frequent in group 1. Pure alumina CoC THA can be used as a benchmark for comparison with newer CoC THAs