In many papers, the diagnosis of pincer-type
femoroacetabular impingement (FAI) is attributed to the presence
of
Purpose: Femoroacetabular impingement (FAI) has recently been described as a cause of adult hip pain and a precursor of hip osteoarthritis. Pincer type is secondary to acetabular retroversion or
We examined the morphology of mammalian hips asking whether evolution can explain the morphology of impingement in human hips. We describe two stereotypical mammalian hips, coxa recta and coxa rotunda. Coxa recta is characterised by a straight or aspherical section on the femoral head or head-neck junction. It is a sturdy hip seen mostly in runners and jumpers. Coxa rotunda has a round femoral head with ample head-neck offset, and is seen mostly in climbers and swimmers. Hominid evolution offers an explanation for the variants in hip morphology associated with impingement. The evolutionary conflict between upright gait and the birth of a large-brained fetus is expressed in the female pelvis and hip, and can explain pincer impingement in a
Osteoarthritis is extremely common and many different causes for it have been described. One such cause is abnormal morphology of the affected joint, the hip being a good example of this. For those joints with femoroacetabular impingement (FAI) or developmental dysplasia of the hip (DDH), a link with subsequent osteoarthritis seems clear. However, far from being abnormal, these variants may be explained by evolution, certainly so for FAI, and may actually be normal rather than representing deformity or disease. The animal equivalent of FAI is coxa recta, commonly found in species that run and jump. It is rarely found in animals that climb and swim. In contrast are the animals with coxa rotunda, a perfectly spherical femoral head, and more in keeping with the
Hip joint preservation remains a preferred treatment option for hips with mechanically correctable pathologies prior to the development of significant secondary arthrosis. The pathologies most amenable to joint preservation are hip dysplasia and femoroacetabular impingement. These pathologies sometimes overlap. Untreated acetabular dysplasia of modest severity always leads to arthrosis if uncorrected. Acetabular dysplasia is best treated by periacetabular osteotomy, usually combined with arthrotomy for management of labral pathology and associated cam-impingement if present. Pre-operative variables associated with the best long-term outcomes include less secondary arthrosis, younger age, and concentric articular surfaces. The earlier PAO series show 20 year survivorship of 81% and 65% in Tonnis Grade 0 and 1 hips. Femoroacetabular impingement has become progressively recognised as perhaps the most common cause of secondary arthrosis. The etiology of impingement is multifactorial and includes both genetic factors and stresses experienced by the hip prior to cessation of growth. Cam impingement can be quantified by the alpha angle as measured on plain radiographs and radial MR sequences. Cam impingement can be treated by arthroscopic or open femoral head-neck osteochondroplasty. As with hip dysplasia, prognosis following treatment is correlated with the severity of pre-operative secondary arthrosis but unfortunately impinging hips more commonly have some degree of arthrosis pre-operatively whereas dysplastic hips can become symptomatic with instability in the absence of arthrosis. The scientific basis for the treatment of pincer impingement is less strong. Unlike cam impingement and hip dysplasia, pincer impingement pathology in the absence of
Hip joint preservation remains a preferred treatment option for hips with mechanically correctable pathologies prior to the development of significant secondary arthrosis. The pathologies most amenable to joint preservation are hip dysplasia and femoroacetabular impingement. These pathologies sometimes overlap. Untreated acetabular dysplasia of modest severity always leads to arthrosis if uncorrected. Acetabular dysplasia is best treated by periacetabular osteotomy, usually combined with arthrotomy for management of labral pathology and associated cam-impingement if present. Preoperative variables associated with the best long-term outcomes include less secondary arthrosis, younger age, and concentric articular surfaces. Femoroacetabular impingement has become progressively recognised as perhaps the most common cause of secondary arthrosis. The etiology of impingement is multifactorial and includes both genetic factors and stresses experienced by the hip prior to cessation of growth. Cam impingement can be quantified by the alpha angle as measured on plain radiographs and radial MR sequences. Cam impingement can be treated by arthroscopic or open femoral head-neck osteochondroplasty. As with hip dysplasia, prognosis following treatment is correlated with the severity of preoperative secondary arthrosis but unfortunately impinging hips more commonly have some degree of arthrosis preop whereas dysplastic hips can become symptomic with instability in the absence of arthrosis. The scientific basis for the treatment of pincer impingement is less strong. Unlike cam impingement and hip dysplasia, pincer impingement pathology in the absence of
Pre-existing hip pathology such as femoroacetabular impingement is believed by some, to have a direct causal relationship with osteoarthritis of the hip. The strength of this relationship remains unknown. We investigate the prevalence of abnormal bone morphology in the symptomatic hip on the pre-operative anteroposterior pelvic radiograph of consecutive patients undergoing hip resurfacing. Rotated radiographs were excluded. One hundred patients, of mean age 53.5 years were included (range 33.4–71.4 years, 32% female). We examined the films for evidence of a cam-type impingement lesion (alpha angle >50.5°, a pistol grip, Pitt's pits, a medial hook, an os acetabuli and rim ossification), signs of acetabular retroversion or a pincer-type impingement lesion (crossover sign, posterior wall sign, ischial sign,
Hip joint preservation remains a preferred treatment option for hips with mechanically correctable pathologies prior to the development of significant secondary arthrosis. The pathologies most amenable to joint preservation are hip dysplasia and femoroacetabular impingement. These pathologies sometimes overlap. Untreated acetabular dysplasia of modest severity, if left uncorrected, always leads to arthrosis. Acetabular dysplasia is best treated by periacetabular osteotomy, usually combined with arthrotomy for management of labral pathology and associated cam-impingement if present. Pre-operative variables associated with the best long-term outcomes include less secondary arthrosis, younger age, and concentric articular surfaces. Femoroacetabular impingement has become progressively recognised as perhaps the most common cause of secondary arthrosis. The etiology of impingement is multifactorial and includes both genetic factors and stresses experienced by the hip prior to cessation of growth. Cam impingement can be quantified by the alpha angle as measured on plain radiographs and radial MR sequences. Further, significant cam impingement is clearly associated with the development of osteoarthrosis. Treatment can be performed either by arthroscopic or open femoral head-neck osteochondroplasty. As with hip dysplasia, prognosis following treatment is correlated with the severity of preoperative secondary arthrosis but unfortunately impinging hips more commonly have some degree of arthrosis preop whereas dysplastic hips can become symptomatic with instability in the absence of arthrosis. The scientific basis for the treatment of pincer impingement is less strong. Unlike cam impingement and hip dysplasia, pincer impingement pathology in the absence of
Surgical invention to preserve the native hip joint remains a preferred treatment option for hips in young patients with mechanically correctable pathologies prior to the development of significant secondary arthrosis. The two most common pathologies most amenable to joint preservation are hip dysplasia and femoroacetabular impingement. These pathologies sometimes overlap. Untreated acetabular dysplasia of modest severity, if left uncorrected, always leads to arthrosis. Acetabular dysplasia is best treated by periacetabular osteotomy, usually combined with arthrotomy for management of labral pathology and associated cam-impingement, if present. Correction of deformities on the femoral side is now less common and reserved for only the more severe combined femoral and acetabular dysplasias or the rare isolated femoral dysplasia. Pre-operative variables associated with the best long-term outcomes include less secondary arthrosis, younger age, and concentric articular surfaces. Femoroacetabular impingement has become progressively recognised as perhaps the most common cause of secondary arthrosis. The etiology of impingement is multifactorial and includes both genetic factors and stresses experienced by the hip prior to cessation of growth. Cam impingement can be quantified by the alpha angle as measured on plain radiographs and radial MR sequences. Further, significant cam impingement is clearly associated with the development of osteoarthrosis. Treatment can be performed either by arthroscopic or open femoral head-neck osteochondroplasty. As with hip dysplasia, prognosis following treatment is correlated with the severity of pre-operative secondary arthrosis but unfortunately impinging hips more commonly have some degree of arthrosis pre-op whereas dysplastic hips can become symptomatic with the onset of instability in the absence of significant secondary arthrosis. The scientific basis for the treatment of pincer impingement is less strong. Unlike cam impingement and hip dysplasia, pincer impingement pathology in the absence of
Introduction. Ectopic ossification (EO) at the acetabular rim has been suggested to be associated with pincer impingement and to lead to ossification of the labrum. However, this has never been substantiated with histological, radiographic and MRI findings in large cohorts of patients. We hypothesized that it is more a bone apposition of the acetabular rim and that it occurs more frequently in
Summary Statement. Pincer deformities are involved in the genesis of femoro-acetabular impingement (FAI). Radiographic patterns suggestive of pincer deformities are common among general population. Prevalence of the pincer deformities among general population may be overestimated if only plain radiographs are considered. Background. Pincer deformities (coxa profunda, protrusio acetabuli, global retroversion, isolated cranial over-coverage) have been advocated as a cause of femoro-acetabular impingement (FAI) and early hip osteoarthritis (OA). Different radiographic patterns may advocate the presence of a pincer deformity. The prevalence of these radiographic patterns among general adult population, as their role in early hip OA, is poorly defined. Methods. From a database of 40.351 pelvic radiograms and CT collected at our institution between 2005 and 2010, we selected 118 caucasian individuals (56 females, 62 males), aged between 15 and 60 years, who underwent both plain radiographs and CT of the pelvis. A series of exclusion criteria were strictly applied to achieve a sample of adult general population as more representative as possible. In particular patients with presence of any disease involving hip joint, including: advanced hip OA (grade II or III of Tonnis scale), head necrosis, fractures, heterotopic ossifications, bone and soft tissue tumors, rheumatic pathologies, classic hip dysplasia with lateral center-edge angle (L-CEA) less than 20°, clinical diagnosis of FAI or hip pain, were excluded from the present study. We also excluded patients in which open growth plates, osteopenia, hardware or evidence of prior surgery were present. Radiographs were investigated for pelvic tilt, signs of retroversion, lateral center-edge angle (L-CEA), presence of
It has been well documented in the arthroplasty literature that lumbar degenerative disc disease (DDD) contributes to abnormal spinopelvic motion. However, the relationship between the severity or pattern of hip osteoarthritis (OA) as measured on an anteroposterior (AP) pelvic view and spinopelvic biomechanics has not been well investigated. Therefore, the aim of the study is to examine the association between the severity and pattern of hip OA and spinopelvic motion. A retrospective chart review was conducted to identify patients undergoing primary total hip arthroplasty (THA). Plain AP pelvic radiographs were reviewed to document the morphological characteristic of osteoarthritic hips. Lateral spine-pelvis-hip sitting and standing plain radiographs were used to measure sacral slope (SS) and pelvic femoral angle (PFA) in each position. Lumbar disc spaces were measured to determine the presence of DDD. The difference between sitting and standing SS and PFA were calculated to quantify spinopelvic motion (ΔSS) and hip motion (ΔPFA), respectively. Univariate analysis and Pearson correlation were used to identify morphological hip characteristics associated with changes in spinopelvic motion.Aims
Methods
Femoroacetabular impingement (FAI) patients report exacerbation of hip pain in deep flexion. However, the exact impingement location in deep flexion is unknown. The aim was to investigate impingement-free maximal flexion, impingement location, and if cam deformity causes hip impingement in flexion in FAI patients. A retrospective study involving 24 patients (37 hips) with FAI and femoral retroversion (femoral version (FV) < 5° per Murphy method) was performed. All patients were symptomatic (mean age 28 years (SD 9)) and had anterior hip/groin pain and a positive anterior impingement test. Cam- and pincer-type subgroups were analyzed. Patients were compared to an asymptomatic control group (26 hips). All patients underwent pelvic CT scans to generate personalized CT-based 3D models and validated software for patient-specific impingement simulation (equidistant method).Aims
Methods
This study aims to assess the relationship between history of pseudotumour formation secondary to metal-on-metal (MoM) implants and periprosthetic joint infection (PJI) rate, as well as establish ESR and CRP thresholds that are suggestive of infection in these patients. We hypothesized that patients with a pseudotumour were at increased risk of infection. A total of 1,171 total hip arthroplasty (THA) patients with MoM articulations from August 2000 to March 2014 were retrospectively identified. Of those, 328 patients underwent metal artefact reduction sequence MRI and had minimum two years’ clinical follow-up, and met our inclusion criteria. Data collected included demographic details, surgical indication, laterality, implants used, history of pseudotumour, and their corresponding preoperative ESR (mm/hr) and CRP (mg/dl) levels. Multivariate logistic regression modelling was used to evaluate PJI and history of pseudotumour, and receiver operating characteristic curves were created to assess the diagnostic capabilities of ESR and CRP to determine the presence of infection in patients undergoing revision surgery.Aims
Methods
Pelvic tilt is believed to affect the symptomology of osteoarthritis (OA) of the hip by alterations in joint movement, dysplasia of the hip by modification of acetabular cover, and femoroacetabular impingement by influencing the impingement-free range of motion. While the apparent role of pelvic tilt in hip pathology has been reported, the exact effects of many forms of treatment on pelvic tilt are unknown. The primary aim of this study was to investigate the effects of surgery on pelvic tilt in these three groups of patients. The demographic, radiological, and outcome data for all patients operated on by the senior author between October 2016 and January 2020 were identified from a prospective registry, and all those who underwent surgery with a primary diagnosis of OA, dysplasia, or femoroacetabular impingement were considered for inclusion. Pelvic tilt was assessed on anteroposterior (AP) standing radiographs using the pre- and postoperative pubic symphysis to sacroiliac joint (PS-SI) distance, and the outcomes were assessed with the Hip Outcome Score (HOS), International Hip Outcome Tool (iHOT-12), and Harris Hip Score (HHS).Aims
Methods
As our understanding of hip function and disease improves, it is evident that the acetabular fossa has received little attention, despite it comprising over half of the acetabulum’s surface area and showing the first signs of degeneration. The fossa’s function is expected to be more than augmenting static stability with the ligamentum teres and being a templating landmark in arthroplasty. Indeed, the fossa, which is almost mature at 16 weeks of intrauterine development, plays a key role in hip development, enabling its nutrition through vascularization and synovial fluid, as well as the influx of chondrogenic stem/progenitor cells that build articular cartilage. The pulvinar, a fibrofatty tissue in the fossa, has the same developmental origin as the synovium and articular cartilage and is a biologically active area. Its unique anatomy allows for homogeneous distribution of the axial loads into the joint. It is composed of intra-articular adipose tissue (IAAT), which has adipocytes, fibroblasts, leucocytes, and abundant mast cells, which participate in the inflammatory cascade after an insult to the joint. Hence, the fossa and pulvinar should be considered in decision-making and surgical outcomes in hip preservation surgery, not only for their size, shape, and extent, but also for their biological capacity as a source of cytokines, immune cells, and chondrogenic stem cells. Cite this article:
Slipped upper femoral epiphysis (SUFE) has well documented biochemical and mechanical risk factors. Femoral and acetabular morphologies seem to be equally important. Acetabular retroversion has a low prevalence in asymptomatic adults. Hips with dysplasia, osteoarthritis, and Perthes’ disease, however, have higher rates, ranging from 18% to 48%. The aim of our study was to assess the prevalence of acetabular retroversion in patients presenting with SUFE using both validated radiological signs and tomographical measurements. A retrospective review of all SUFE surgical cases presenting to the Royal Children’s Hospital, Melbourne, Australia, from 2012 to 2019 were evaluated. Preoperative plain radiographs were assessed for slip angle, validated radiological signs of retroversion, and standardized postoperative CT scans were used to assess cranial and mid-acetabular version.Aims
Methods
Femoroacetabular impingement (FAI) describes abnormal bony contact of the proximal femur against the acetabulum. The term was first coined in 1999; however what is often overlooked is that descriptions of the morphology have existed in the literature for centuries. The aim of this paper is to delineate its origins and provide further clarity on FAI to shape future research. A non-systematic search on PubMed was performed using keywords such as “impingement” or “tilt deformity” to find early anatomical descriptions of FAI. Relevant references from these primary studies were then followed up.Aims
Methods
The aim of the study was to compare two methods of calculating pelvic incidence (PI) and pelvic tilt (PT), either by using the femoral heads or acetabular domes to determine the bicoxofemoral axis, in patients with unilateral or bilateral primary hip osteoarthritis (OA). PI and PT were measured on standing lateral radiographs of the spine in two groups: 50 patients with unilateral (Group I) and 50 patients with bilateral hip OA (Group II), using the femoral heads or acetabular domes to define the bicoxofemoral axis. Agreement between the methods was determined by intraclass correlation coefficient (ICC) and the standard error of measurement (SEm). The intraobserver reproducibility and interobserver reliability of the two methods were analyzed on 31 radiographs in both groups to calculate ICC and SEm.Aims
Methods
Periacetabular osteotomy (PAO) is an established treatment for acetabular dysplasia. It has also been proposed as a treatment for patients with acetabular retroversion. By reviewing a large cohort, we aimed to test whether outcome is equivalent for both types of morphology and identify factors that influenced outcome. A single-centre, retrospective cohort study was performed on patients with acetabular retroversion treated with PAO (n = 62 hips). Acetabular retroversion was diagnosed clinically and radiologically (presence of a crossover sign, posterior wall sign, lateral centre-edge angle (LCEA) between 20° and 35°). Outcomes were compared with a control group of patients undergoing PAO for dysplasia (LCEA < 20°; n = 86 hips). Femoral version was recorded. Patient-reported outcome measures (PROMs), complications, and reoperation rates were measured.Aims
Methods