Introduction and Objective. Despite the low incidence of pilon fractures among lower limb injuries, their high-impact nature presents difficulties in surgical management and recovery. Current literature includes a wide range of different management strategies, however there is no universal treatment algorithm. We aim to determine clinical outcomes in patients with open and
Abstract. Objectives. Current literature on pilon fracture includes a range of different management strategies, however there is no universal treatment algorithm. We aim to determine clinical outcomes in patients with open and
To evaluate the functional outcome of open humerus diaphyseal fractures treated with the Three-stitch technique of antegrade humerus nailing. This is a retrospective study conducted at the Department of Orthopaedics in D. Y. Patil University, School of Medicine, Navi Mumbai, India. The study included 25 patients who were operated on from January 2019 to April 2021 and follow-ups done till May 2022. Inclusion criteria were adult patients with open humerus diaphyseal fractures (Gustilo-Anderson Classification). All patients with
Fragility ankle fractures are traditionally managed conservatively or with open reduction internal fixation (ORIF). Tibiotalocalcaneal (TTC) fusion is an alternative option for the geriatric patient. This systematic review and meta-analysis provides a detailed analysis of the functional and clinical outcomes of hindfoot nailing for fragility ankle fractures presented so far in the literature. A systematic search was performed on MEDLINE, EMBASE, Cochrane Library, Scopus, Web of Science, identifying fourteen studies for inclusion. Studies including patients over 60 with a fragility ankle fracture, treated with TTC nail were included. Patients with a previous fracture of the ipsilateral limb, fibular nails, and pathological fractures were excluded. Subgroup analyses were performed according to (1) open vs
The most challenging complications in orthopaedic trauma surgery are fracture-related infections (FRI). The incidence ranges from approximately 1% after
In atrophic non-union models, a minimally invasive technique is used to deliver stem cells into the fracture site via percutaneous injection. This technique is significantly affected by a backflow leakage and the net number of cells might be reduced. The Z-track method is a technique used in clinical practice for intramuscular injections to prevent backflow leakage. We evaluated the potential of the Z-track injection technique for preventing cell loss in non-union models by determining the behaviour of observable marker fluids. Firstly, toluene blue stain was used as an injection material to allow visual detection of its distribution. Rat's cadaver legs were used and tibias were kept unbroken to ensure intact skin and overlying soft tissue. Technique includes pulling the skin over the shin of tibia towards the ankle and injection of the dye around the mid-shaft. The needle was then partially pulled back, the skin was returned to its normal position and a complete extraction of the needle was followed. Secondly, a mixture of contrast material and toluene blue was used to allow direct visual and radiological detection of the injected material into the fracture site. Ante-grade nailing of tibia via tibial tuberosity was carried out followed by a 3 point
Summary Statement. Umbilical cord derived stem cell secretion could enhance the osteogenic differentiation of human bone marrow stem cells. It may promote bone, cartilage and tendon regeneration in rat models, but the effect was not significant up to now. Introduction. Mesenchymal stem cells (MSCs) are multipotent cells that have extensive proliferative capacity. MSCs synthesise various exosomes, growth factors and cytokines. Stem cell secretions were made from serum free conditioned medium of stem cells collected from different human tissues, such as adipose tissue and dental pulp. Our hypothesis is umbilical cord stem cell secretion could promote multiple proliferation and differentiation of MSCs, also enhance the regeneration of musculoskeletal tissues. Methods. In vitro: Human bone marrow mesenchymal stem cells (hBMSCs) were cultured in high glucose dulbecco's modified eagle medium with 10% serum. hBMSCs were treated by differential medium for osteogenic, tenogenic and chondrogenic differentiation. Alizarin red S staining, alcian blue staining and sirius red staining were used to test osteogenesis, chondrogenesis and tenogenesis of hBMSCs after treated by secretion. RNA expression level of hBMSCs were detected by real-time reverse transcriptase polymerase chain reaction. In vivo: 10 weeks male Sprague-Dawley rats were used in all the animal studies. Rat calvarial bone defect model, rat femoral
Post-natal vasculogenesis, the process by which vascular committed bone marrow stem cells or endothelial precursor cells migrate, differentiate and incorporate into the nacent endothelium and thereby contribute to physiological and pathological neurovascularisation, has stimulated much interest. Its contribution to neovascularisation of tumours, wound healing and revascularisation associated with ischaemia of skeletal and cardiac muscles is well established. We evaluated the responses of endothelial precursor cells in bone marrow to musculoskeletal trauma in mice. Bone marrow from six C57 Black 6 mice subjected to a standardised,
Summary. For injuries to the lower leg or forearm, supplemental support from soft tissue compression (STC) with a splint or brace-like system and combined with external fixation could be done effectively and quickly with a minimal of facilities in the field. Introduction. Soft tissue compression (STC) in functional braces has been shown to provide rigidity and stability for most
Summary Statement. This study demonstrated that Sclerostin monoclonal antibody (Scl-Ab) enhanced bone healing in the rat osteotomy model. Scl-Ab increased callus size, callus bone volume fraction, rate of callus bone formation and fracture callus strength. Introduction. Sclerostin is a protein secreted by osteocytes and is characterized as a key inhibitor of osteoblast-mediated bone formation. Previous studies demonstrated that treatment with a sclerostin monoclonal antibody (Scl-Ab) results in significantly increased bone formation, bone mass and strength in rat
Summary Statement. The Dkk3-derived cells represent a branch of the periosteal mesenchymal lineage that produces fibrocartilage as well as regenerating the periosteal structures. Introduction. Mesenchymal progenitor cells are capable of generating a wide variety of mature cells that constitute the connective tissue system. Our Laboratory has been developing SMAA GFP reporter mice to prove to be an effective tool for identifying these cells prior to the expression of markers of differentiation characteristic of bone, fat, muscular blood vessels or fibrocartilage. Dkk3 was chosen as a candidate reporter because microarray of SMAA-sorted cells culture indicated high expression of this non-canonical anti-Wnt factor, which was not anticipated in a culture with strong osteogenic potential. Material and Methods. Fracture healing process was evaluated in 12 week old male mice at 3, 5, 7, 14, 21 and 28days post fracture. A 3 color reporter mouse was generated by crossing SMAA-GFPcherry × Col3.6GFPcyan × Dkk3-eGFP and subjected to tibial
We studied the effect of vitamin C on fracture healing in the elderly. A total of 80 elderly Osteogenic Disorder Shionogi rats were divided into four groups with different rates of vitamin C intake. A
This review is aimed at clinicians appraising
preclinical trauma studies and researchers investigating compromised bone
healing or novel treatments for fractures. It categorises the clinical
scenarios of poor healing of fractures and attempts to match them
with the appropriate animal models in the literature. We performed an extensive literature search of animal models
of long bone fracture repair/nonunion and grouped the resulting
studies according to the clinical scenario they were attempting
to reflect; we then scrutinised them for their reliability and accuracy
in reproducing that clinical scenario. Models for normal fracture repair (primary and secondary), delayed
union, nonunion (atrophic and hypertrophic), segmental defects and
fractures at risk of impaired healing were identified. Their accuracy
in reflecting the clinical scenario ranged greatly and the reliability
of reproducing the scenario ranged from 100% to 40%. It is vital to know the limitations and success of each model
when considering its application.
To review the systemic impact of smoking on bone healing as evidenced
within the orthopaedic literature. A protocol was established and studies were sourced from five
electronic databases. Screening, data abstraction and quality assessment
was conducted by two review authors. Prospective and retrospective
clinical studies were included. The primary outcome measures were
based on clinical and/or radiological indicators of bone healing.
This review specifically focused on non-spinal orthopaedic studies.Objectives
Methods
Impaction allograft is an established method of securing initial stability of an implant in arthroplasty. Subsequent bone integration can be prolonged, and the volume of allograft may not be maintained. Intermittent administration of parathyroid hormone has an anabolic effect on bone and may therefore improve integration of an implant. Using a canine implant model we tested the hypothesis that administration of parathyroid hormone may improve osseointegration of implants surrounded by bone graft. In 20 dogs a cylindrical porous-coated titanium alloy implant was inserted into normal cancellous bone in the proximal humerus and surrounded by a circumferential gap of 2.5 mm. Morsellised allograft was impacted around the implant. Half of the animals were given daily injections of human parathyroid hormone (1–34) 5 μg/kg for four weeks and half received control injections. The two groups were compared by mechanical testing and histomorphometry. We observed a significant increase in new bone formation within the bone graft in the parathyroid hormone group. There were no significant differences in the volume of allograft, bone-implant contact or in the mechanical parameters. These findings suggest that parathyroid hormone improves new bone formation in impacted morsellised allograft around an implant and retains the graft volume without significant resorption. Fixation of the implant was neither improved nor compromised at the final follow-up of four weeks.
This study was designed to test the hypothesis
that the sensory innervation of bone might play an important role
in sensing and responding to low-intensity pulsed ultrasound and
explain its effect in promoting fracture healing. In 112 rats a
standardised mid-shaft tibial fracture was created, supported with
an intramedullary needle and divided into four groups of 28. These
either had a sciatic neurectomy or a patellar tendon resection as
control, and received the ultrasound or not as a sham treatment.
Fracture union, callus mineralisation and remodelling were assessed using
plain radiography, peripheral quantitative computed tomography and
histomorphology. Daily ultrasound treatment significantly increased the rate of
union and the volumetric bone mineral density in the fracture callus
in the neurally intact rats (p = 0.025), but this stimulating effect
was absent in the rats with sciatic neurectomy. Histomorphology
demonstrated faster maturation of the callus in the group treated
with ultrasound when compared with the control group. The results
supported the hypothesis that intact innervation plays an important
role in allowing low-intensity pulsed ultrasound to promote fracture
healing.
We have undertaken a prospective study in patients with a fracture of the femoral shaft requiring intramedullary nailing to test the hypothesis that the femoral canal could be a potential source of the second hit phenomenon. We determined the local femoral intramedullary and peripheral release of interleukin-6 (IL-6) after fracture and subsequent intramedullary reaming. In all patients, the fracture caused a significant increase in the local femoral concentrations of IL-6 compared to a femoral control group. The concentration of IL-6 in the local femoral environment was significantly higher than in the patients own matched blood samples from their peripheral circulation. The magnitude of the local femoral release of IL-6 after femoral fracture was independent of the injury severity score and whether the