Advertisement for orthosearch.org.uk
Results 1 - 20 of 83
Results per page:
Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 111 - 111
1 Nov 2021
Mulder F Senden R Staal H de Bot R van Douveren F Tolk J Meijer K Witlox A
Full Access

Introduction and Objective. Slipped Capital Femoral Epiphysis (SCFE) is one of the most common hip disorders in children and is characterized by a proximal femoral deformity, resulting in early osteoarthritis. Several studies have suggested that SCFE patients after in situ fixation show an altered gait pattern. Early identification of gait alterations might lead to earlier intervention programs to prevent osteoarthritis. The aim of this study is to analyse gait alterations in SCFE patients after in situ fixation compared to typically developed children, using the Computer Assisted Rehabilitation Environment (CAREN) system. Materials and Methods. This is a cross-sectional, multi-center case-control study in the Netherlands. Eight SCFE patients and eight age- and sex-matched typically developed were included from two hospitals. Primary outcomes were kinematic parameters (absolute joint angles), studied with gait analysis using statistical parametric mapping (SPM). Secondary outcomes were spatiotemporal parameters, the Notzli alpha angle, muscle activation patterns (EMG), and clinical questionnaires (VAS, Borg CR10, SF-36, and HOOS), analyzed using non-parametric statistical methods. Results. Patients (mean BMI=28±9 kg/m. 2. ) showed altered gait patterns, with significantly increased external hip rotation and decreased downward pelvic obliquity during the pre-swing phase of the gait cycle compared to typically developed (mean BMI=22±3 kg/m. 2. ). Walking speed, cadence, % stance time, and step length were reduced in SCFE patients. Coefficient of variances of cadence, stance time, and step length were increased. Patients had a mean alpha angle of 64, SD=7.9. Clinical questionnaires showed that general health (SF-36) was 80±25, energy/fatigue (SF-36) was 67±15, pain (VAS) was 0±1.5, and total HOOS score was 85±18. Conclusions. SCFE patients after in situ fixation appear to have developed a compensation mechanism, showing slight alterations in gait parameters, good general health, little functional limitations of the hip, and no self-reported pain. Cam deformities, altered joint loading, and this compensation mechanism might influence long-term early osteoarthritis. BMI reduction should be implemented in care plans, as obesity might also play a role in unfavorable long-term outcomes


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 112 - 112
14 Nov 2024
Tsagkaris C Hamberg ME Villefort C Dreher T Krautwurst BK
Full Access

Introduction. Understanding the implications of decreased femoral torsion on gait and running in children and adolescents might help orthopaedic surgeons to optimize treatment decisions. To date, there is limited evidence regarding the kinematic gait deviations between children with decreased femoral torsion and typically developing children as well as regarding the implications of the same on the adaptation of walking to running. Method. A three dimensional gait analysis study was undertaken to compare gait deviations during running and walking among patients with decreased femoral torsion (n=15) and typically developing children (n=11). Linear mixed models were utilized to establish comparisons within and between the two groups and investigate the relation between clinical examination, spatial parameters and the difference in hip rotation between running and walking. Result. Patients exhibited increased external hip rotation during walking in comparison to controls accompanied by higher peaks for the same as well as for, knee valgus and external foot progression angle. A similar kinematic gait pattern was observed during running with significant differences noted in peak knee valgus. In terms of variations from running to walking, patients internally rotated their initially external rotated hip by 4°, whereas controls maintained the same internal hip rotation. Patients and controls displayed comparable kinematic gait deviations during running compared to walking. The passive hip range of motion, torsions and velocity did not notably influence the variation between mean hip rotation from running to walking. Conclusion. This study underlines the potential of 3D gait kinematics to elucidate the functional implications of decreased FT and hence may contribute to clinical decision making


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 26 - 26
1 Dec 2021
Edwards T Daly C Donovan R Whitehouse M
Full Access

Abstract. Objectives. There is debate regarding the optimal surgical technique for fixing femoral diaphyseal fractures in children aged 4 to 12 years. The aim of this study was to conduct a systematic review and meta-analysis to compare the complication rate following flexible intramedullary nailing (FIN), plate fixation and external fixation (EF) for traumatic femoral diaphyseal fractures in children aged 4 to 12. Methods. We searched MEDLINE, EMBASE and CENTRAL databases for interventional and observational studies. Two independent reviewers screened, assessed quality and extracted data from the identified studies. The primary outcome was the risk of any complication. Results. Nine randomised controlled trials (RCTs) and 19 observational studies fulfilled the eligibility criteria. Within the RCTs, five analysed FIN (n=161), two analysed plates (n=51) and five analysed EF (n=168). Within the observational studies, 13 analysed FIN (n=610), seven analysed plates (n=214) and six analysed EF (n=153). The overall risk of complications was lower following plate fixation when compared to FIN (RR 0.45, 95% CI 0.28 to 0.73, p=0.001) in the observational studies. The overall risk of complications was higher following EF when compared to FIN in both RCTs (RR 1.94, 95% CI 1.25 to 3.01, p=0.003) and observational studies (RR 1.97, 95% CI 1.50 to 2.58, p<0.001). The overall risk of complications was higher following EF when compared to plate fixation in both RCTs (RR 7.42, 95% CI 1.84 to 29.98, p=0.005) and observational studies (RR 4.39, 95% CI 2.64 to 7.30, p<0.001). Conclusions. This study reports a significantly decreased relative risk of complications when femoral diaphyseal fractures in children aged 4 to 12 are managed with plates. The overall quality of evidence is low, highlighting the need for a prospective multicentre randomised trial at low risk of bias due to randomisation and outcome measurement to identify if any fixation technique is superior


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 155 - 155
1 Nov 2021
Edwards T Daly C Donovan R Whitehouse M
Full Access

Introduction and Objective. The most common paediatric orthopaedic injury requiring hospital admission is a femoral fracture. There is debate regarding the optimal surgical technique for fixing femoral diaphyseal fractures in children aged 4 to 12 years. The National Institute for Health and Care Excellence (NICE) and the American Academy of Orthopaedic Surgeons (AAOS) have issued relevant guidelines, however, there is limited evidence to support these. The aim of this study was to conduct a systematic review and meta-analysis to compare the complication rate following flexible intramedullary nailing (FIN), plate fixation and external fixation (EF) for traumatic femoral diaphyseal fractures in children aged 4 to 12. Materials and Methods. We searched MEDLINE, EMBASE and CENTRAL databases for interventional and observational studies. Two independent reviewers screened, assessed quality and extracted data from the identified studies. The primary outcome was the risk of any complication. Secondary outcomes assessed the risk of pre-specified individual complications. Results. Nine randomised controlled trials (RCTs) and 19 observational studies (six prospective and 13 retrospective) fulfilled the eligibility criteria. Within the RCTs, five analysed FIN (n=161), two analysed plates (n=51) and five analysed EF (n=168). Within the observational studies, 13 analysed FIN (n=610), seven analysed plates (n=214) and six analysed EF (n=153). The overall risk of complications was lower following plate fixation when compared to FIN fixation (RR 0.45, 95% CI 0.28 to 0.73, p=0.001) in the observational studies. The overall risk of complications was higher following EF when compared to FIN fixation in both RCTs (RR 1.94, 95% CI 1.25 to 3.01, p=0.003) and observational studies (RR 1.97, 95% CI 1.50 to 2.58, p<0.001). The overall risk of complications was higher following EF when compared to plate fixation in both RCTs (RR 7.42, 95% CI 1.84 to 29.98, p=0.005) and observational studies (RR 4.39, 95% CI 2.64 to 7.30, p<0.001). Conclusions. Although NICE and the AAOS recommend FIN for femoral diaphyseal fractures in children aged 4 to 12, this study reports a significantly decreased relative risk of complications when these injuries are managed with plates. Our findings provide valuable information to healthcare professionals who are involved in discussing the risk and benefits of different management options with patients and their families. The overall quality of evidence is low, highlighting the need for a rigorous prospective multicentre randomised trial at low risk of bias due to randomisation and outcome measurement to identify if any fixation technique is superior


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 124 - 124
1 Nov 2021
Mariscal G Camarena JN Galvañ T Barrios C Fernández P
Full Access

Introduction and Objective. The treatment of severe deformities often requiring aggressive techniques such as vertebral resection and osteotomies with high comorbidity. To mitigate this risk, several methods have been used to achieve a partial reduction of stiff curves. The objective of this study was to evaluate and quantify the effectiveness of the Perioperative Halo-Gravity Traction (HGT) in the Treatment of Severe Spinal Deformity in Children. Materials and Methods. A historical cohort of consecutive childs with severe spinal deformity who underwent to a perioperative HGT as a part of the treatment protocol. Minimum follow-up of 2 years. Demographic, clinical and radiological data, including time duration of perioperative HGT and Cobb angle in the coronal and sagittal plane. The radiological variables were measured before the placement of the halo, after placement of the halo, at the end of the period of traction, after surgery and in the final follow-up. Results. Seventeen males (57%) and twenty females (43%) were included in the final analysis. The mean age was 6.5 years (SD 4.8). The most frequent etiology for the spinal deformity was syndromic (13 patients). The average preoperative Cobb angle was 88º (range, 12–135). HGT was used in 17 cases prior to a primary surgery and in 20 cases prior to a revision surgery. After the HGT, an average correction of 34% of the deformity was achieved (p <0.05). After the surgery this correction improved. At 2-year follow-up there was a correction loss of 20% (p <0.05). There were 3 complications (8.1%): 2 pin infections and cervical subluxation. Conclusions. The application of HGT in cases of severe rigid deformity is useful allowing a correction of the preoperative deformity of 34%, facilitating surgery. Preoperative HGT seems to be a safe and effective intervention in pediatric patients with high degree deformity


Bone & Joint Research
Vol. 5, Issue 11 | Pages 538 - 543
1 Nov 2016
Weeks BK Hirsch R Nogueira RC Beck BR

Objectives. The aim of the current study was to assess whether calcaneal broadband ultrasound attenuation (BUA) can predict whole body and regional dual-energy x-ray absorptiometry (DXA)-derived bone mass in healthy, Australian children and adolescents at different stages of maturity. Methods. A total of 389 boys and girls across a wide age range (four to 18 years) volunteered to participate. The estimated age of peak height velocity (APHV) was used to classify children into pre-, peri-, and post-APHV groups. BUA was measured at the non-dominant heel with quantitative ultrasonometry (QUS) (Lunar Achilles Insight, GE), while bone mineral density (BMD) and bone mineral content (BMC) were examined at the femoral neck, lumbar spine and whole body (DXA, XR-800, Norland). Associations between BUA and DXA-derived measures were examined with Pearson correlations and linear regression. Participants were additionally ranked in quartiles for QUS and DXA measures in order to determine agreement in rankings. Results. For the whole sample, BUA predicted 29% of the study population variance in whole body BMC and BMD, 23% to 24% of the study population variance in lumbar spine BMC and BMD, and 21% to 24% of the variance in femoral neck BMC and BMD (p < 0.001). BUA predictions were strongest for the most mature participants (pre-APHV R. 2. = 0.03 to 0.19; peri-APHV R. 2. = 0.05 to 0.17; post-APHV R. 2. = 0.18 to 0.28) and marginally stronger for girls (R. 2. = 0.25-0.32, p < 0.001) than for boys (R. 2. = 0.21-0.27, p < 0.001). Agreement in quartile rankings between QUS and DXA measures of bone mass was generally poor (27.3% to 38.2%). Conclusion. Calcaneal BUA has a weak to moderate relationship with DXA measurements of bone mass in children, and has a tendency to misclassify children on the basis of quartile rankings. Cite this article: B. K. Weeks, R. Hirsch, R. C. Nogueira, B. R. Beck. Is calcaneal broadband ultrasound attenuation a valid index of dual-energy x-ray absorptiometry-derived bone mass in children? Bone Joint Res 2016;5:538–543. DOI: 10.1302/2046-3758.511.BJR-2016-0116.R1


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_8 | Pages 90 - 90
1 Apr 2017
Ezzat A Lovejoy J Alexander K
Full Access

Background. North America is facing a rising epidemic involving strains of methicillin-resistant Staphylococcus aureus (MRSA) that, instead of being found almost exclusively in hospitals, are community-associated (CA-MRSA). These strains are aggressive, associated with musculoskeletal manifestations including osteomyelitis (OM), and septic arthritis (SA). We aimed to establish novel management algorithms for acute OM and SA in children. We investigated S.aureus susceptibilities to current first-line antimicrobials to determine their local efficacy. Methods. The project was conducted at Nemours Children Hospital in Florida, USA, following approval by the internal review board. A literature review was conducted. An audit of S.aureus antimicrobial sensitivities was completed over three years and compared against national standards. Susceptibilities of clindamycin, trimethoprim/sulfamethoxazole (TMP/SMX) and vancomycin were studied using local resistance ranges. Results. Two algorithms for acute OM and SA management were created adopting a multidisciplinary team approach from admission to discharge whilst differentiating higher risk patients within fast-track pathways. We analysed 532 microbiology results for antibiotic susceptibilities from 2012 to 2014. Overall, 51% of S.aureus infections were MRSA versus 49% methicillin-susceptible S.aureus (MSSA). Surprisingly, clindamycin resistance rates rose compared to 2005 (MRSA 7% in 2005 vs 39% currently, MSSA 20% vs 31% and total S.aureus resistance rate of 8% vs 35%, respectively). MRSA and MSSA isolates were near 100% sensitive to Vancomycin and TMP/SMX. No appropriate national standards existed. Conclusions. Multidisciplinary based algorithms were created for acute OM and SA treatment in children. Possible therapeutic roles for ultrasound guided aspiration and corticosteroids were highlighted in SA. Our audit revealed equal incidence of MSSA to MRSA, supporting national figures on falling MRSA. Interestingly, incresed resistance of MSSA and MRSA was found towards recommended first line clindamycin, raising concern over its efficacy. Level of Evidence. 5


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 128 - 128
1 Nov 2021
Stallone S Trisolino G Zarantonello P Ferrari D Papaleo P Napolitano F Santi GM Frizziero L Liverani A Gennaro GLD
Full Access

Introduction and Objective

Virtual Surgical Planning (VSP) is becoming an increasingly important means of improving skills acquisition, optimizing clinical outcomes, and promoting patient safety in orthopedics and traumatology. Pediatric Orthopedics (PO) often deals with the surgical treatment of congenital or acquired limbs and spine deformities during infancy. The objective is to restore function, improve aesthetics, and ensure proper residual growth of limbs and spine, using osteotomies, bone grafts, age-specific or custom-made hardware and implants.

Materials and Methods

Three-dimensional (3D) digital models were generated from Computed Tomography (CT) scans, using free open-source software, and the surgery was planned and simulated starting from the 3D digital model. 3D printed sterilizable models were fabricated using a low-cost 3D printer, and animations of the operation were generated with the aim to accurately explain the operation to parents. All procedures were successfully planned using our VSP method and the 3D printed models were used during the operation, improving the understanding of the severely abnormal bony anatomy.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_2 | Pages 28 - 28
1 Jan 2017
Berti L Caravaggi P Lullini G Tamarri S Giannini S Garibizzo G Leardini A
Full Access

The flat foot is a frequent deformity in children and results in various levels of functional alterations. A diagnosis based on foot morphology is not sufficient to define the therapeutic approach. In fact, the degree of severity of the deformity and the effects of treatments require careful functional assessment. In case of functional flatfoot, subtalar arthroereisis is the surgical treatment of choice. The aim of this study is to evaluate and compare the functional outcomes of two different bioabsorbable implants designed for subtalar arthroereisis in childhood severe flat foot by means of thorough gait analysis. Ten children (11.3 ± 1.6 yrs, 19.7 ± 2.8 BMI) were operated for flat foot correction [1,2] in both feet, one with the calcaneo-stop method, i.e. a screw implanted into the calcaneus, the other with an endoprosthesis implanted into the sinus-tarsi. Gait analysis was performed pre- and 24 month post-operatively using a 8-camera motion system (Vicon, UK) and a surface EMG system (Cometa, Italy) to detect muscular activation of the main lower limb muscles. A combination of established protocols, for lower limb [3] and multi-segment foot [4] kinematic analysis, was used to calculate joint rotations and moments during three level walking trials for each patient. At the foot, the tibio-talar, Chopart, Lisfranc, 1. st. metatarso-phalangeal joints were tracked in three-dimensions, together with the medial longitudinal arch. Significant differences in standard X-ray measurements were observed between pre- and post-op, but not between the two treatment groups. Analysis of the kinematic variables revealed functional improvements after surgery. In particular, a reduction of eversion between the shank and calcaneus (about 15° on average) and a reduction of inversion between metatarsus and calcaneus (about 18° on average) were detected between pre- and post-operatively after both treatments. Activation of the main plantar/dorsiflexor muscles was similar at both pre- and post-op assessments with both implants. The combined lower limb and multi-segment foot kinematic analyses were found adequate to provide accurate functional assessment of the feet and of the lower limbs. Both surgical treatments restored nearly normal kinematics of the foot and of the lower limb joints, associated also to a physiologic muscular activation


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 48 - 48
1 Jan 2017
Wesseling M Bosmans L Van Dijck C Wirix-Speetjens R Jonkers I
Full Access

Children with cerebral palsy (CP) often present femoral bone deformities not accounted for in generic musculoskeletal models [1,2]. MRI-based models can be used to include subject-specific muscle paths [3,4], although this is a time-demanding process. Recently, non-rigid deformation techniques have been used to transform generic bone geometry, including muscle points, onto personalized bones [5]. However, it is still unknown to what extent such an approximation of subject-specific detail affects calculated hip contact forces (HCFs) during gait in CP children. Seven children diagnosed with diplegic CP walked independently at self-selected speed. 3D marker trajectories were captured using Vicon (Oxford Metrics, UK) and force data was measured using two AMTI force platforms (Watertown, MA). MR-images were acquired (Philips Ingenia 1.5T) of all subjects lying supine. Firstly, a generic model [6] was scaled using the marker positions of a static pose. Secondly, a MRI-model containing the subject-specific bone structures and muscle paths of all hip and upper leg muscles was created [3]. Thirdly, the generic femur and pelvis geometries and muscle points were transformed onto the image-based femur and pelvis using an advanced non-rigid deformation procedure (Materialise N.V.). For all models, further analyses were performed in OpenSim 3.1 [7]. A kalman smoother procedure was used to calculate joint angles [8]. Muscle forces were calculated using a static optimization minimizing the sum of squared muscle activities. Next, HCFs were calculated and normalized to body weight (BW). First and second peak HCFs were determined and used for a Kruskal-Wallis test to determine differences between models. In case of a significant difference, a post-hoc rank-based multiple comparison test with Bonferonni adjustment was used. Further, average absolute differences in muscle points between the models was calculated, as well as average differences in moment arm lengths (MALs), reflecting muscle function. Where the scaled generic muscle points differed on average 2.49cm from the MRI points, the non-rigidly deformed points differed 1.54cm from the MRI muscle points. Specifically, the tensor fascia latae differed most between the deformed and MRI models (11.7cm). When considering MALs, the gluteii muscles present an altered function for the generic and deformed models compared to the MRI model for all degrees of freedom of the hip at the time of both HCF peaks. The differences between models resulted in a significantly increased second peak HCF for the MRI models compared to the generic models (first peak average HCF: 3.88BW, 3.95BW and 4.90BW; second peak average HCF: 3.03BW, 4.89BW and 5.32BW for the generic, MRI and non-rigidly deformed models respectively). Although not significantly different, the deformed models calculated slightly increased HCFs compare to the MRI models. The generic models underestimated HCFs compared to the MRI models, while the non-rigidly deformed models slightly overestimated HCFs. However, differences between the deformed and MRI models in terms of muscle points and MALs remain, specifically for the gluteii muscles. Therefore, further user-guided modification of the model based on MR-images will be necessary


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XI | Pages 17 - 17
1 Apr 2012
Miller N Duncan R Huntley J
Full Access

Pyomyositis is a primary pyogenic infection in skeletal muscle, often progressing to abscess formation. It is rare in temperate climates and generally deep-seated within the pelvis with non-specific clinical features, making diagnosis difficult. Magnetic Resonance Imaging (MRI) is highly sensitive for muscle inflammation and fluid collection and with its increasing availability is now the investigation of choice. Treatment of pyomyositis abscess has traditionally been with incision and drainage or guided aspiration followed by a prolonged course of antibiotics, although there are sporadic reports of cases treated successfully with antibiotics alone. From our 20 year database of over 16000 paediatric orthopaedic admissions we identified only 3 cases with MRI-confirmed pyomyositis abscess. These were all in boys (aged 2-12) and affected the gluteal, piriformis and adductor muscles. Despite the organisms not being identified, each patient was treated successfully with a short (4-7 day) course of intravenous antibiotics followed by 2-6 weeks of oral therapy. There were no recurrences or complications and all made a full recovery. We propose that uncomplicated pyomyositis abscess in children may usually be managed conservatively without the need for open or percutaneous drainage


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_16 | Pages 102 - 102
1 Nov 2018
Gonzalez-Vazquez A Raftery R Chen G Murray DJ O'Brien FJ
Full Access

Side-effects associated to the use of bone morphogenetic proteins into scaffold-based devices for bone repair highlight the necessity for identifying new therapeutic targets that potentially improve bone healing in adults. In this sense, we recently demonstrated the age-associated decrease in the mechanosensitivity of bone marrow mesenchymal stromal/stem cells (MSCs) and identified c-Jun N-terminal kinase 3 (JNK3) as a mechanically-activated modulator of the superior osteogenic potential of MSCs derived from children (C-MSCs) in comparison to adults (A-MSCs). Building on this work, the aim of this study was to design a JNK3-activated collagen-nanohydroxyapatite (coll-nHA) scaffold that restore the child bone healing capacity in adults. Results revealed that JNK3 activator (JNK3*) enhanced A-MSC’ alkaline phosphatase (ALP) activity to the same extent of C-MSCs by facilitating the activation of JNK3. Moreover, A-MSCs cultured on the coll-JNK3* scaffold (collagen-scaffold containing JNK3*) showed positive uptake of the JNK3*, upregulation of early osteogenic markers as well as increased ALP activity and mineralization. More importantly, rat critical calvarial defects treated with coll-JNK3* for 28 days showed a significantly higher 18.07 % bone volume fraction in comparison to rats treated with Coll-nHA −6.04%- and empty defects −2.58%. Which correlated with the presence of a larger amount of blood vessels and mineralized tissue in samples treated with coll-JNK3* when compared with coll-nHA and empty defects. In conclusion, the coll-JNK3* capacity to enhance osteogenesis and bone healing by activating JNK3 highlights how by understanding the stem cell mechanobiology we can improve the development of next generation therapeutics for tissue repair


The current study aims to compare the clinico radiological outcomes between Non-Fusion Anterior Scoliosis (NFASC) Correction and Posterior Spinal Fusion (PSF) for Lenke 5 curves at 2 years follow up.

Methods:38 consecutive Lenke 5 AIS patients treated by a single surgeon with NFASC (group A) or PSF (group B) were matched by age, Cobb's angle, and skeletal maturity. Intraoperative blood loss, operative time, LOS, coronal Cobbs, and SRS22 scores at 2 years were compared. Flexibility was assessed by modified Schober's test. Continuous variables were compared using student t-tests and categorical variables were compared using chi-square.

The cohort included 19 patients each in group A and B . Group A had M:F distribution of 1:18 while group B had 2:17. The mean age in group A and group B were 14.8±2.9 and 15.3±3.1 years respectively. The mean follow-up of patients in groups A and B were 24.5±1.8 months and 27.4±2.1 months respectively. Mean pre-op thoracolumbar/lumbar (TL/L) cobbs for group A and group B were 55°±7° and 57.5°±8° respectively. At two years follow up, the cobbs for group A and B were 18.2°±3.6° and 17.6°±3.5° respectively (p=0.09). The average operating time for groups A and B were 169±14.2 mins and 219±20.5 mins respectively (p<0.05). The average blood loss of groups A and B were 105.3±15.4 and 325.3±120.4 respectively (p<0.05). The average number of instrumented vertebra between groups A and B were 6.2 and 8.5 respectively (p<0.05). The average LOS for NFASC and PSF was 3.3±0.9 days and 4.3±1.1 days respectively (p<0.05). No statistically significant difference in SRS 22 score was noted between the two groups. No complications were recorded.

Our study shows no significant difference in PSF and NFASC in terms of Cobbs correction and SRS scores, but the NFASC group had significantly reduced blood loss, operative time, and fewer instrumented levels. NFASC is an effective alternative technique to fusion to correct and stabilize Lenke 5 AIS curves with preservation of spinal motion.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVI | Pages 11 - 11
1 Aug 2012
Singhal R Perry D Khan F Cohen D Stevenson H James L Sampath J Bruce C
Full Access

Background. Establishing the diagnosis in a child presenting with an atraumatic limp can be challenging. There is particular difficulty distinguishing septic arthritis (SA) from transient synovitis (TS) and consequently clinical prediction algorithms have been devised to differentiate the conditions using the presence of fever, raised erythrocyte sedimentation rate (ESR), raised white cell count (WCC) and inability to weight bear. Within Europe measurement of the ESR has largely been replaced with assessment of C-reactive protein (CRP) as an acute phase protein. We have evaluated the utility of including CRP in a clinical prediction algorithm to distinguish TS from SA. Method. All children with a presentation of ‘atraumatic limp’ and a proven effusion on hip ultrasound between 2004 and 2009 were included. Patient demographics, details of the clinical presentation and laboratory investigations were documented to identify a response to each of four variables (Weight bearing status, WCC >12,000 cells/m3, CRP >20mg/L and Temperature >38.5 degrees C. The definition of SA was based upon microscopy and culture of the joint fluid collected at arthrotomy. Results. 311 hips were included within the study. Of these 282 were considered to have transient synovitis. 29 patients met criteria to be classified as SA based upon laboratory assessment of the synovial fluid. The introduction of CRP eliminated the need for a four variable model as the use of two variables (CRP and weight bearing status) had similar efficacy. An algorithm that indicated a diagnosis of SA in individuals who could not weight-bear and who had a CRP >20mg/L correctly classified SA in 94.8% individuals, with a sensitivity of 75.9%, specificity of 96.8%, positive predictive value of 71.0%, and negative predictive value of 97.5%. CRP was a significant independent predictor of septic arthritis. Conclusions. CRP was a strong independent risk factor of septic arthritis, and its inclusion within a regression model simplifies the diagnostic algorithm, such that a two-variable model correctly classified 95% individuals with SA. Nevertheless, this and similar algorithms are generally more reliable in excluding SA, than confirming SA, and therefore a clinician's acumen remains important in identifying SA in those individuals with a single abnormal variable


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 23 - 23
11 Apr 2023
Keen R Liu J Williams A Wood S
Full Access

X-Linked Hypophosphataemia (XLH) is a rare, progressive, hereditary phosphate-wasting disorder characterised by excessive activity of fibroblast growth factor 23. The International XLH Registry was established to provide information on the natural history of XLH and impact of treatment on patient outcomes. The cross-sectional orthopaedic data presented are from the first interim analysis. The XLH Registry (NCT03193476) was initiated in August 2017, aims to recruit 1,200 children and adults with XLH, and will run for 10 years. At the time of analysis (Last Patient In: 30/11/2020; Database Lock: 29/03/2021) 579 subjects diagnosed with XLH were enrolled from 81 hospital sites in 16 countries (360 (62.2%) children, 217 (37.5%) adults, and 2 subjects of unknown age). Of subjects with retrospective clinical data available, skeletal deficits were the most frequently self-reported clinical problems for children (223/239, 93.3%) and adults (79/110, 71.8%). Retrospective fracture data were available for 183 subjects (72 children, 111 adults); 50 had a fracture (9 children, 41 adults). In children, fractures tended to occur in tibia/fibula and/or wrist; only adults reported large bone fractures. Joint conditions were noted for 46 subjects (6 children, 40 adults). For adults reporting osteoarthritis, knees (60%), hips (42.5%), and shoulders (22.5%) were the most frequently affected joints. Retrospective orthopaedic surgery data were collected for 151 subjects (52 children, 99 adults). Osteotomy was the most frequent surgery reported (n=108); joint replacements were recorded for adults only. This is the largest set of orthopaedic data from XLH subjects collected to date. Longitudinal information collected during the 10-year Registry duration will generate real-world evidence which will help to inform clinical practice. Authors acknowledge the contribution of all International XLH Registry Steering Committee members


Cubitus varus following paediatric supra-condylar humeral fracture represents a complex three-dimensional malunion. This affects cosmesis, function and subsequent distal humeral fracture risk. Operative correction is however difficult with high complication rates. We present the 40-year Yorkhill experience of managing this deformity.

From a total of 3220 supracondylar humeral fractures, 40 cases of post-traumatic cubitus varus were identified.

There were ten undisplaced fractures, treated in cast, and thirty displaced fractures. Five were treated in cast, thirteen manipulated (MUA), four MUA+k-wires, seven ORIF (six k-wire, one steinman pin) and one in skeletal-traction.

Sixteen malunions were treated operatively. The mean pre-operative varus was 19°. All had cosmetic concerns, three mild pain, one paraesthesia/weakness and three reduced movement (ROM). The operative indication was cosmetic in fifteen and functional in one (concern about instability).

Twelve patients had lateral closing-wedge osteotomies; three complex/3D osteotomies (dome, unspecified rotational, antero-lateral wedge) and two had attempted 8-plate guided-growth correction.

Complications occurred in eight patients (50 %): Fixation was lost in three (two staples, one k-wiring), incomplete correction in six (both 8-plates, both staples, two standard plates) and one early wound infection requiring metalwork removal resulting in deformity recurrence. One patient underwent revision lateral wedge osteotomy with full deformity correction but marked ROM restriction (20–100°) secondary to loose bodies.

Those without complications were satisfied (50 %). All patients with residual deformity were unsatisfied. 1 patient with keloid scarring was unsatisfied despite deformity correction.

Varus malunion is uncommon (1 %) but needs to be guarded against. It tended to occur in displaced fractures treated with MUA and cast alone. We therefore recommend additional pin fixation in all displaced fractures.

Deformity correction should only be attempted in those with significant symptomatic deformity due to the high complication/dissatisfaction rates. Staple osteotomy fixation and 8-plate guided growth correction are not recommended.


Bone & Joint 360
Vol. 13, Issue 1 | Pages 44 - 45
1 Feb 2024
Marson BA

This edition of the Cochrane Corner looks at the three reviews that were published in the second half of 2023: surgical versus non-surgical interventions for displaced intra-articular calcaneal fractures; cryotherapy following total knee arthroplasty; and physical activity and education about physical activity for chronic musculoskeletal pain in children and adolescents


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 117 - 117
14 Nov 2024
Tirta M Rahbek O Kold S Husum HC
Full Access

Introduction. Selective screening of children at risk for developmental dysplasia of the hip (DDH) is based on clinical examination and risk factor identification. Two meta-analyses published in 2012 found breech presentation, family history of DDH, female sex and primiparity to increase the risk of DDH. However, the DDH definition, reference tests and age of the examined children vary considerably, complicating the translation of those findings to current screening guidelines. The aim of this meta-analysis was to evaluate the association of previously proposed risk factors to the risk of sonographically verified DDH. Method. We searched PubMed, EMBASE and Cochrane library to identify cohort, RCTs, case-control and cross-sectional studies from 1980 to 2023 in English language. Eligible studies included participants under three months of age, where the diagnosis of DDH was made by hip ultrasound using the gold standard Graf method and reported information on one or more of the proposed risk factors and final diagnosis was available. Result. Of 5363 studies screened, 20 studies (n=64543 children) were included. Breech presentation (OR: 4.2, 95%CI 2.6-6.6), family history (3.8, 95%CI 2.1-7.2), female sex (2.5, 95%CI 1.7-3.6), oligohydramnios (3.8, 95%CI 1.7-8.5) and high birthweight (2.0, 95%CI 1.6-2.5) significantly increased the risk of DDH. C-section, primiparity, multiple births, low birthweight and prematurity were not found to increase the risk for DDH, and there was only one study about clubfoot as a risk factor. Heterogeneity was high (I. 2. >75%) in all the tested factors except high birthweight (I. 2. =0%). Subgroup analysis was performed to investigate these heterogeneities. Conclusion. Family history of DDH and breech presentation are associated with significant increase of the risk of sonographic DDH in children aged three months. A similar risk increase was detected for oligohydramnios, which was not detected in previous meta-analyses. Additionally, the DDH risk increase of female sex was found to be lower than previously reported


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 83 - 83
2 Jan 2024
Halloum A Kold S Rölfing J Abood A Rahbek O
Full Access

The aim of this scoping review is to understand the extent and type of evidence in relation to the use of guided growth for correcting rotational deformities of long bones. Guided growth is routinely used to correct angular deformities in long bones in children. It has also been proven to be a viable method to correct rotational deformities, but the concept is not yet fully examined. Databases searched include Medline, Embase, Cochrane Library, Web of Science and Google Scholar. All identified citations were uploaded into Rayyan.ai and screened by at least two reviewers. The search resulted in 3569 hits. 14 studies were included: 1 review, 3 clinical trials and 10 pre-clinical trials. Clinical trials: a total of 21 children (32 femurs and 5 tibiae) were included. Surgical methods were 2 canulated screws connected by cable, PediPlates obliquely oriented, and separated Hinge Plates connected by FiberTape. Rotation was achieved in all but 1 child. Adverse effects reported include limb length discrepancy (LLD), knee stiffness and rebound of rotation after removal of tethers. 2 pre-clinical studies were ex-vivo studies, 1 using 8-plates on Sawbones and 1 using a novel z-shaped plates on human cadaver femurs. There were 5 lapine studies (2 using femoral plates, 2 using tibial plates and 1 using an external device on tibia), 1 ovine (external device on tibia), 1 bovine (screws and cable on metacarp) and a case-report on a dog that had an external device spanning from femur to tibia. Rotation was achieved in all studies. Adverse effects reported include implant extrusions, LLD, articular deformities, joint stiffness and rebound. All included studies conclude that guided growth is a viable treatment for rotational deformities of long bones, but there is great variation in models and surgical methods used, and in reported adverse effects


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_14 | Pages 24 - 24
1 Dec 2022
Trisolino G Frizziero L Santi GM Alessandri G Liverani A Menozzi GC Depaoli A Martinelli D Di Gennaro GL Vivarelli L Dallari D
Full Access

Paediatric musculoskeletal (MSK) disorders often produce severe limb deformities, that may require surgical correction. This may be challenging, especially in case of multiplanar, multifocal and/or multilevel deformities. The increasing implementation of novel technologies, such as virtual surgical planning (VSP), computer aided surgical simulation (CASS) and 3D-printing is rapidly gaining traction for a range of surgical applications in paediatric orthopaedics, allowing for extreme personalization and accuracy of the correction, by also reducing operative times and complications. However, prompt availability and accessible costs of this technology remain a concern. Here, we report our experience using an in-hospital low-cost desk workstation for VSP and rapid prototyping in the field of paediatric orthopaedic surgery. From April 2018 to September 2022 20 children presenting with congenital or post-traumatic deformities of the limbs requiring corrective osteotomies were included in the study. A conversion procedure was applied to transform the CT scan into a 3D model. The surgery was planned using the 3D generated model. The simulation consisted of a virtual process of correction of the alignment, rotation, lengthening of the bones and choosing the level, shape and direction of the osteotomies. We also simulated and calculated the size and position of hardware and customized massive allografts that were shaped in clean room at the hospital bone bank. Sterilizable 3D models and PSI were printed in high-temperature poly-lactic acid (HTPLA), using a low-cost 3D-printer. Twenty-three operations in twenty patients were performed by using VSP and CASS. The sites of correction were: leg (9 cases) hip (5 cases) elbow/forearm (5 cases) foot (5 cases) The 3D printed sterilizable models were used in 21 cases while HTPLA-PSI were used in five cases. customized massive bone allografts were implanted in 4 cases. No complications related to the use of 3D printed models or cutting guides within the surgical field were observed. Post-operative good or excellent radiographic correction was achieved in 21 cases. In conclusion, the application of VSP, CASS and 3D-printing technology can improve the surgical correction of complex limb deformities in children, helping the surgeon to identify the correct landmarks for the osteotomy, to achieve the desired degree of correction, accurately modelling and positioning hardware and bone grafts when required. The implementation of in-hospital low-cost desk workstations for VSP, CASS and 3D-Printing is an effective and cost-advantageous solution for facilitating the use of these technologies in daily clinical and surgical practice