Advertisement for orthosearch.org.uk
Results 1 - 6 of 6
Results per page:
The Bone & Joint Journal
Vol. 106-B, Issue 5 | Pages 482 - 491
1 May 2024
Davies A Sabharwal S Liddle AD Zamora Talaya MB Rangan A Reilly P

Aims. Metal and ceramic humeral head bearing surfaces are available choices in anatomical shoulder arthroplasties. Wear studies have shown superior performance of ceramic heads, however comparison of clinical outcomes according to bearing surface in total shoulder arthroplasty (TSA) and hemiarthroplasty (HA) is limited. This study aimed to compare the rates of revision and reoperation following metal and ceramic humeral head TSA and HA using data from the National Joint Registry (NJR), which collects data from England, Wales, Northern Ireland, Isle of Man and the States of Guernsey. Methods. NJR shoulder arthroplasty records were linked to Hospital Episode Statistics and the National Mortality Register. TSA and HA performed for osteoarthritis (OA) in patients with an intact rotator cuff were included. Metal and ceramic humeral head prostheses were matched within separate TSA and HA groups using propensity scores based on 12 and 11 characteristics, respectively. The primary outcome was time to first revision and the secondary outcome was non-revision reoperation. Results. A total of 4,799 TSAs (3,578 metal, 1,221 ceramic) and 1,363 HAs (1,020 metal, 343 ceramic) were included. The rate of revision was higher for metal compared with ceramic TSA, hazard ratio (HR) 3.31 (95% confidence interval (CI) 1.67 to 6.58). At eight years, prosthesis survival for ceramic TSA was 98.7% (95% CI 97.3 to 99.4) compared with 96.4% (95% CI 95.2 to 97.3) for metal TSA. The majority of revision TSAs were for cuff insufficiency or instability/dislocation. There was no significant difference in the revision rate for ceramic compared with metal head HA (HR 1.33 (95% CI 0.76 to 2.34)). For ceramic HA, eight-year prosthetic survival was 92.8% (95% CI 86.9 to 96.1), compared with 91.6% (95% CI 89.3 to 93.5) for metal HA. The majority of revision HAs were for cuff failure. Conclusion. The rate of all-cause revision was higher following metal compared with ceramic humeral head TSA in patients with OA and an intact rotator cuff. There was no difference in the revision rate for HA according to bearing surface. Cite this article: Bone Joint J 2024;106-B(5):482–491


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_4 | Pages 85 - 85
1 Feb 2017
Kretzer J Schroeder M Mueller U Sonntag R Braun S
Full Access

The numbers of anatomic total shoulder joint replacements (ATSR) is increasing during the past years with encouraging clinical results. However, the survivorship of ATSR is lower as compared to total knee and hip replacements. Although the reasons for revision surgery are multifactorial, wear-associated problems like loosening are well-known causes for long-term failure of ATSR. Furthermore there is lack of valid experimental wear tests for ATSR. Therefore the purpose of this study was to define experimental wear testing parameters for ATSR and to perform a wear study comparing ceramic and metallic humeral heads. Kinetic and kinematic data were adopted from in-vivo loading measurements of the shoulder joint (. orthoload.com. ) and from several clinical studies on shoulder joint kinematics. As activity an ab/adduction motion of 0 to 90° in combination with an ante/retroversion while lifting a load of 2 kg has been chosen. Also a superior-inferior translation of the humeral head has been considered. The wear assessment was performed using a force controlled AMTI joint simulator for 3×10. 6. cycles (Fig. 1) and polyethylene wear has been assed gravimetrically. The studied ATSR (Turon. TM. , DJO Surgical, USA) resulted in a polyethylene wear rate of 62.75 ± 1.60 mg/10. 6. cycles in combination with metallic heads. The ceramic heads significantly reduced the wear rate by 26.7 % to 45.99 ± 1.31 mg/10. 6. (p<0.01). The wear scars dimensions were in good agreement to clinical retrievals. This study is the first that experimentally studied the wear behavior of ATSR based on clinical and biomechanical data under load controlled conditions. In term of wear the analyzed ATSR could clearly benefit from ceramic humeral heads. However, in comparison to experimental wear studies of total knee and hip replacements the wear rate of the studied ATSR was relatively high. Therefore further research may focus on optimized wear conditions of ATSR and the hereby described method may serve as a tool to evaluate a wear optimization process


The Bone & Joint Journal
Vol. 106-B, Issue 6 | Pages 639 - 639
1 Jun 2024
Davies A Sabharwal S Liddle AD Zamora Talaya MB Rangan A Reilly P


Bone & Joint 360
Vol. 13, Issue 3 | Pages 31 - 34
3 Jun 2024

The June 2024 Shoulder & Elbow Roundup. 360. looks at: Reverse versus anatomical total shoulder replacement for osteoarthritis? A UK national picture; Acute rehabilitation following traumatic anterior shoulder dislocation (ARTISAN): pragmatic, multicentre, randomized controlled trial; acid for rotator cuff repair: a systematic review and meta-analysis of randomized controlled trials; Metal or ceramic humeral head total shoulder arthroplasty: an analysis of data from the National Joint Registry; Platelet-rich plasma has better results for long-term functional improvement and pain relief for lateral epicondylitis: a systematic review and meta-analysis of randomized controlled trials; Quantitative fatty infiltration and 3D muscle volume after nonoperative treatment of symptomatic rotator cuff tears: a prospective MRI study of 79 patients; Locking plates for non-osteoporotic proximal humeral fractures in the long term; A systematic review of the treatment of primary acromioclavicular joint osteoarthritis


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_7 | Pages 1 - 1
1 May 2016
Murray R Juszczyk M Frankle M Uhlenbrock A Kelnberger A Heinrich W
Full Access

A secure taper connection in shoulder arthroplasty is mandatory to avoid loosening and fretting. This study's objective was to determine the amount of in situ force used by surgeons to seat a humeral head and to determine the disengagement force of the taper connection. The influence of 1) material type, 2) head size, and 3) surgeon on the impaction force and the fixation (pulloff force) of the sample was examined. Methods. Impaction data was collected from experienced shoulder surgeons (n=5) during a cadaver lab. Testing groups (n=5 each) were: 1) small ceramic, 2) big ceramic, 3)small metal and 4) large metal. Twenty centric, anatomic humeral heads (DJO surgical, Vista, CA, TURONTM, material: CoCrMo or BIOLOX®delta, size: 38×14mm or 54×22mm) were paired with a corresponding humeral neck (TURON™, DJO surgical, type: neutral modular, material: CoCrMo). Each taper was always used with the same humeral head throughout testing. The impaction force sequence was recorded using an instrumented impactor (Piezo sensor, model 208 C05, PCB PIEZOTRONICSINC, Depew, NY, ±1%). The surgeons impacted all samples into the cadaver using their typical pattern of hammer strikes (Figure 1). The engaged humeral head and taper were removed by hand and then disengaged using an instrumented (U93, HBM, Darmstadt, Germany, load limit: 5kN) hand-held pulloff-device. Statistics and data analysis were performed in MATLAB (2014b, Mathworks, Natick, MA, α=0.05). Two-tailed, pearson's linear correlation coefficients are reported. Group differences were determined using Kruskal Wallis test. Pair-wise comparisons were performed using a Tukey correction. Results. Extremely high and variable impaction forces were measured (Table 1, Figure 2). The maximum force was nearly 27 kN; however, that value reduced to ∼18kN when the data from an outlier surgeon was removed. Maximum impaction forces were 12.45±4.36 kN, and the average was 10.47±3.63 kN. The pulloff force ranged from 0.94 kN to 5.54 kN with an average of 2.76±1.19 kN. Higher impaction forces required higher pulloff forces to disengage the taper connection (p<0.001, R>−0.608). Ceramic humeral heads showed a 24% higher fixation strength (p=0.004) under similar engagement conditions (p=0.18) in comparison to metal components. Head size does not appear to influence either the magnitude of the impaction force surgeons use (p>0.20) nor the force needed to disengage the taper (p=0.25). The surgeon performing the insertion had a significant influence on the impaction strike timing (p<0.001), number of strikes (p<0.001), and the impaction forces (p<0.03) and the pulloff force (p<0.001). Conclusions. Impaction forces were markedly larger than those recorded for taper engagement in hip arthroplasty. The ceramic humeral component showed greater fixation strength in comparison to the metal for similar impaction forces. Pulloff forces were approximately 25% of the impaction force. Potentially, this low taper efficiency resulted from the cadaver absorbing much of the energy rather than the taper connection. The influence of the patient and the clinical situation on the taper efficiency is unknown. Variations between surgeons greatly influenced the impaction and the fixation force. Therefore, individual surgeon practices may substantially influence clinical fixation strength of tapered shoulder implants


The Bone & Joint Journal
Vol. 106-B, Issue 11 | Pages 1273 - 1283
1 Nov 2024
Mahmud H Wang D Topan-Rat A Bull AMJ Heinrichs CH Reilly P Emery R Amis AA Hansen UN

Aims

The survival of humeral hemiarthroplasties in patients with relatively intact glenoid cartilage could theoretically be extended by minimizing the associated postoperative glenoid erosion. Ceramic has gained attention as an alternative to metal as a material for hemiarthroplasties because of its superior tribological properties. The aim of this study was to assess the in vitro wear performance of ceramic and metal humeral hemiarthroplasties on natural glenoids.

Methods

Intact right cadaveric shoulders from donors aged between 50 and 65 years were assigned to a ceramic group (n = 8, four male cadavers) and a metal group (n = 9, four male cadavers). A dedicated shoulder wear simulator was used to simulate daily activity by replicating the relevant joint motion and loading profiles. During testing, the joint was kept lubricated with diluted calf serum at room temperature. Each test of wear was performed for 500,000 cycles at 1.2 Hz. At intervals of 125,000 cycles, micro-CT scans of each glenoid were taken to characterize and quantify glenoid wear by calculating the change in the thickness of its articular cartilage.