Advertisement for orthosearch.org.uk
Results 1 - 15 of 15
Results per page:
Bone & Joint Research
Vol. 10, Issue 8 | Pages 474 - 487
2 Aug 2021
Duan M Wang Q Liu Y Xie J

Transforming growth factor-beta2 (TGF-β2) is recognized as a versatile cytokine that plays a vital role in regulation of joint development, homeostasis, and diseases, but its role as a biological mechanism is understood far less than that of its counterpart, TGF-β1. Cartilage as a load-resisting structure in vertebrates however displays a fragile performance when any tissue disturbance occurs, due to its lack of blood vessels, nerves, and lymphatics. Recent reports have indicated that TGF-β2 is involved in the physiological processes of chondrocytes such as proliferation, differentiation, migration, and apoptosis, and the pathological progress of cartilage such as osteoarthritis (OA) and rheumatoid arthritis (RA). TGF-β2 also shows its potent capacity in the repair of cartilage defects by recruiting autologous mesenchymal stem cells and promoting secretion of other growth factor clusters. In addition, some pioneering studies have already considered it as a potential target in the treatment of OA and RA. This article aims to summarize the current progress of TGF-β2 in cartilage development and diseases, which might provide new cues for remodelling of cartilage defect and intervention of cartilage diseases


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 81 - 81
11 Apr 2023
Antonacci P Dauwe J Varga P Ciric D Gehweiler D Gueorguiev B Mys K
Full Access

Cartilage diseases have a significant impact on the patient's quality of life and are a heavy burden for the healthcare system. Better understanding, early detection and proper follow-up could improve quality of life and reduce healthcare related costs. Therefore, the aim of this study was to evaluate if difference between osteoarthritic (OA) and non-osteoarthritic (non-OA) knees can be detected quantitatively on cartilage and subchondral bone levels with advanced but clinical available imaging techniques. Two OA (mean age = 88.3 years) and three non-OA (mean age = 51.0 years) human cadaveric knees were scanned two times. A high-resolution peripheral quantitative computed tomography (HR-pQCT) scan (XtremeCT, Scanco Medical AG, Switzerland) was performed to quantify the bone microstructure. A contrast-enhanced clinical CT scan (GE Revolution Evo, GE Medical Systems AG, Switzerland) was acquired with the contrast agent Visipaque 320 (60 ml) to measure cartilage. Subregions dividing the condyle in four parts were identified semi-automatically and the images were segmented using adaptive thresholding. Microstructural parameters of subchondral bone and cartilage thickness were quantified. The overall cartilage thickness was reduced by 0.27 mm between the OA and non-OA knees and the subchondral bone quality decreased accordingly (reduction of 33.52 % in BV/TV in the layer from 3 to 8 mm below the cartilage) for the femoral medial condyle. The largest differences were observed at the medial part of the femoral medial condyle both for cartilage and for bone parameters, corresponding to clinical observations. Subchondral bone microstructural parameters and cartilage thickness were quantified using in vivo available imaging and apparent differences between the OA and non-OA knees were detected. Those results may improve OA follow-up and diagnosis and could lead to a better understanding of OA. However, further in vivo studies are needed to validate these methods in clinical practice


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 39 - 39
1 Mar 2021
Pavan M Barbera C Galesso D Beninatto R Pluda S
Full Access

Osteoarthritis (OA) is a joint degenerative disease leading to chronic pain and disability, thus resulting in a major socioeconomic health burden. OA, which has long been believed to be a cartilage disease, is now considered a whole-joint disorder affecting various anatomical structures, including subchondral bone. Hyaluronic Acid (HA) is commonly used as intra-articular viscosupplementation therapy for its mechanical features and biological effects. Bisphosphonates (BPs) are antiresorptive agents inhibiting recruitment and maturation of osteoclast precursors and activity of mature osteoclasts in the bone. Pre-clinical evidences in the literature, show that intra-articular BPs could impact on OA progression, slowing down or reversing it. The combination of HA biological and mechanical role and Alendronate (ALD) antiresorptive effect could be an interesting strategy for OA treatment. This study describes the synthesis and characterization of FID-134, a new chemical derivative of HA conjugated with ALD by means of a covalent bond, cleavable in physiological condition. FID-134 was synthesized starting from 500 kDa HA: chemical structure and functionalization degree with ALD were investigated by NMR and ICP-OES. Kinetics of ALD release from FID-134 was determined in TRIS buffer at 37°C and compared to a simple mixture of HA+ALD. 20mg/mL formulations of FID-134 and HA+ALD were investigated for viscoelastic properties, in absence and presence of Ca. 2+. ions. The cytotoxicity of FID-134 and free ALD were tested on Saos-2 osteoblasts (ATCC HTB-85) and on primary bovine chondrocytes (PBC) at day 1, 3 and 7. The efficacy of FID-134 was assessed in an inflammatory arthritis in vitro model, where bovine cartilage biopsies were exposed to IL-1β/OSM (10ng/mL) for 3 weeks; at the same time, cartilage explants were treated with FID-134. Collagen release in the surnatants was quantified and compared to controls. FID-134 structure was confirmed by NMR and the 20% mol/mol functionalization degree was determined by ICP-OES. Only about 50% of total bound ALD was released from FID-134 within 7 days, resulting slower compared to HA+ALD mixture. In presence of Ca. 2+. ions, viscoelastic properties of FID-134 dramatically improved, while HA+ALD formulation remained unaffected. The cytotoxicity of ALD was evident at 100 μM on Saos-2 and PBC after 3 days, while no cytotoxicity was observed at 7 days with FID-134. In the cartilage explant model, a strong collagen release was detected in inflammatory conditions after 3 weeks; this tendency was reversed, and collagen release halved when FID-134 was added to the biopsies. The synthesized HA-ALD adduct, FID-134, opens the door for a new approach for OA treatment. The results suggest that FID-134 could be beneficial in cartilage degradation and in restoration of subchondral bone function. Finally, local administration and controlled BP release would likely overcome the drawbacks of ALD oral administration, such as unspecific features and long-term toxic side effects


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_13 | Pages 49 - 49
1 Mar 2013
Lin Y Hall A Smith I Salter D Simpson H
Full Access

The cartilage diseases such as osteoarthritis and chondral injuries are considered irreversible and the result of recent treatments remains not optimal. One of the reasons is due to the poor understanding of chondrocyte behaviours. To understand more about cartilage, we designed a series of novel experiments. First, a total joint of bovine metatarsophalanges was isolated as our novel model. We chose it because the configuration and the healing potential were similar to human, and many variables of large animal studies could be controlled in laboratory. The model not only provided a good ex vivo platform for cartilage researches but also connected in vitro cellular studies and in vivo animal studies. To mimic joint movement a special driving machine was designed. To characterise the novel model viabilities of chondrocytes and contents of sulphated glycosaminoglycan (GAGs) in extracellular matrixes were measured every seven days. The preliminary results revealed the viabilities of chondrocytes remained above 80% alive in the middle zone after four-weeks culture. The GAGs contents decreased after this culturing period. The experiments still carry on going to compare the static and dynamic models which joint movement could be a determinative factor to the viability of chondrocytes. Cellular treatment is the recent mainstream for cartilage diseases. If advanced knowledge in chondrocyte behaviours could be obtained from this model, development of optimal treatment will be possible in the future


Bone & Joint Research
Vol. 13, Issue 5 | Pages 237 - 246
17 May 2024
Cheng B Wu C Wei W Niu H Wen Y Li C Chen P Chang H Yang Z Zhang F

Aims

To assess the alterations in cell-specific DNA methylation associated with chondroitin sulphate response using peripheral blood collected from Kashin-Beck disease (KBD) patients before initiation of chondroitin sulphate treatment.

Methods

Peripheral blood samples were collected from KBD patients at baseline of chondroitin sulphate treatment. Methylation profiles were generated using reduced representation bisulphite sequencing (RRBS) from peripheral blood. Differentially methylated regions (DMRs) were identified using MethylKit, while DMR-related genes were defined as those annotated to the gene body or 2.2-kilobase upstream regions of DMRs. Selected DMR-related genes were further validated by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) to assess expression levels. Tensor composition analysis was performed to identify cell-specific differential DNA methylation from bulk tissue.


Bone & Joint Research
Vol. 13, Issue 7 | Pages 362 - 371
17 Jul 2024
Chang H Liu L Zhang Q Xu G Wang J Chen P Li C Guo X Yang Z Zhang F

Aims

The metabolic variations between the cartilage of osteoarthritis (OA) and Kashin-Beck disease (KBD) remain largely unknown. Our study aimed to address this by conducting a comparative analysis of the metabolic profiles present in the cartilage of KBD and OA.

Methods

Cartilage samples from patients with KBD (n = 10) and patients with OA (n = 10) were collected during total knee arthroplasty surgery. An untargeted metabolomics approach using liquid chromatography coupled with mass spectrometry (LC-MS) was conducted to investigate the metabolomics profiles of KBD and OA. LC-MS raw data files were converted into mzXML format and then processed by the XCMS, CAMERA, and metaX toolbox implemented with R software. The online Kyoto Encyclopedia of Genes and Genomes (KEGG) database was used to annotate the metabolites by matching the exact molecular mass data of samples with those from the database.


Bone & Joint Research
Vol. 12, Issue 1 | Pages 46 - 57
17 Jan 2023
Piñeiro-Ramil M Sanjurjo-Rodríguez C Rodríguez-Fernández S Hermida-Gómez T Blanco-García FJ Fuentes-Boquete I Vaamonde-García C Díaz-Prado S

Aims

After a few passages of in vitro culture, primary human articular chondrocytes undergo senescence and loss of their phenotype. Most of the available chondrocyte cell lines have been obtained from cartilage tissues different from diarthrodial joints, and their utility for osteoarthritis (OA) research is reduced. Thus, the goal of this research was the development of immortalized chondrocyte cell lines proceeded from the articular cartilage of patients with and without OA.

Methods

Using telomerase reverse transcriptase (hTERT) and SV40 large T antigen (SV40LT), we transduced primary OA articular chondrocytes. Proliferative capacity, degree of senescence, and chondrocyte surface antigen expression in transduced chondrocytes were evaluated. In addition, the capacity of transduced chondrocytes to synthesize a tissue similar to cartilage and to respond to interleukin (IL)-1β was assessed.


Bone & Joint Research
Vol. 11, Issue 11 | Pages 826 - 834
17 Nov 2022
Kawai T Nishitani K Okuzu Y Goto K Kuroda Y Kuriyama S Nakamura S Matsuda S

Aims

The preventive effects of bisphosphonates on articular cartilage in non-arthritic joints are unclear. This study aimed to investigate the effects of oral bisphosphonates on the rate of joint space narrowing in the non-arthritic hip.

Methods

We retrospectively reviewed standing whole-leg radiographs from patients who underwent knee arthroplasties from 2012 to 2020 at our institute. Patients with previous hip surgery, Kellgren–Lawrence grade ≥ II hip osteoarthritis, hip dysplasia, or rheumatoid arthritis were excluded. The rate of hip joint space narrowing was measured in 398 patients (796 hips), and the effects of the use of bisphosphonates were examined using the multivariate regression model and the propensity score matching (1:2) model.


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_IV | Pages 616 - 617
1 Oct 2010
Hudetz D Ivkovic A Jelic M Maticic D Pascher A Pecina M Windhager R
Full Access

Introduction: Articular cartilage injuries are very common, and if untreated can become symptomatic and progressively lead to premature osteoarthritis. It is well known that damaged cartilage has very limited potential to heal itself, and repair and regeneration of hyaline cartilage remain a clinical and scientific challenge. There are no pharmacological methods that can regenerate cartilage, and currently clinical treatments of debridement, chondrocyte transplantation and marrow stimulation have not been shown to restore consistently a durable articular surface. Tissue engineering and gene therapy concepts may improve cartilage repair by introducing cells, scaffolds, growth factors and other potential modulators of cartilage healing process. When analyzing cartilage treatment outcomes, traditionally we use macro- and microscopic assessment, immunohistochemistry, biochemical characterization etc. Recently, it has been postulated that biomechanical properties of newly formed cartilage are just as important, and novel methods of measurements have been proposed. Materials and methods: 38 defects were created on weight-bearing part of the medial femoral condyle in sheep. The sheep were randomly assigned to one of four groups. In the bone marrow clot (BMC) group, the sheep were implanted with untreated autologous bone marrow clot that was aspirated from iliac crest of respected animal. In the bone marrow transduced with Ad. GFP (GFP) group, the sheep were implanted with autologous bone marrow clots genetically modified to over express green fluorescent protein (GFP). In the bone marrow transduced with Ad. TGF-β1 (TGF) group, the sheep were implanted with autologous bone marrow clots genetically modified to over express transforming growth factor-β1. Untreated sheep served as a control (defect without implant), and native cartilage served as positive control. Specimens were collected after 6 months and analyzed by single-impact micro-indentation (SIMI), atomic force microscope (AFM) and scanning electron microscope (SEM). Results: SIMI and AFM measurements showed that repair tissue has greater Young’s elastic modulus then native cartilage. There was a statistically significant difference between TGF-β1, GFP and BMC groups. SEM analysis showed presence of structurally organized collagen molecules in TGF-β1, GFP and BMC groups. Conclusion: The results of this study showed that it is possible to enhance cartilage repair process by means of genetically modified bone marrow. Furthermore, biomechanical data obtained with SIMI, AFM and SEM provided more detailed insight into articular cartilage function and structure, and in future may be of practical importance for a better understanding of both cartilage mechanics and cartilage disease progression


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_2 | Pages 100 - 100
1 Jan 2017
García-Alvarez F Desportes P Estella R Alegre-Aguarón E Piñas J Castiella T Larrad L Albareda J Martínez-Lorenzo M
Full Access

Mesenchymal stem cells (MSCs) are self-renewing, multipotent cells that could potentially be used to repair injured cartilage in diseases. The objetive was to analyze different sources of human MSCs to find a suitable alternative source for the isolation of MSCs with high chondrogenic potential. Femoral bone marrow, adipose tissue from articular and subcutaneous locations (hip, knee, hand, ankle and elbow) were obtained from 35 patients who undewent different types of orthopedic surgery (21 women, mean age 69.83 ± 13.93 (range 38–91) years. Neoplasic and immunocompromised patients were refused. The Ethical Committee for Clinical Research of the Government of Aragón (CEICA) approved the study and all patients provided informed consent. Cells were conjugated wiith monoclonal antibodies. Cell fluorescence was evaluated by flow cytometry using a FACSCalibur flow cytometer and analysed using CellQuest software (Becton Dickinson). Chondrogenic differentiation of human MSCs from the various tissues at P1 and P3 was induced in a 30-day micropellet culture [Pittenger et al., 1999]. To evaluate the differentiation of cartilaginous pellet cultures, samples were fixed embedded in paraffin and cut into 5- υm-thick slices. The slices were treated with hematoxylin-eosin and safranin O (Sigma-Aldrich). Each sample was graded according to the Bern Histological Grading Scale [Grogan et al., 2006], which is a visual scale that incorporates three parameters indicative of cartilage quality: uniform and dark staining with safranin O, cell density or extent of matrix produced and cellular morphology (overall score 0–9). Stained sections were evaluated and graded by two different researchers under a BX41 dual viewer microscope or a Nikon TE2000-E inverted microscope with the NIS-Elements software. Statistics were calculated using bivariate analysis. Pearson's χ2 or Fisher's exact tests were used to compare the Bern Scores of various tissues. To evaluate the cell proliferation, surface marker expression and tissue type results, ANOVA or Kruskal-Wallis tests were used, depending on the data distribution. Results were considered to be significant when p was < 0.05. MSCs from all tissues analysed had a fibroblastic morphology, but their rates of proliferation varied. Subcutaneous fat derived MSCs proliferated faster than bone marrow. MSCs from Hoffa fat, hip and knee subcutaneous proliferated slower than MSCs from elbow, ankle and hand subcutaneous. Flow cytometry: most of cells lacked expression of CD31, CD34, CD36, CD117 (c-kit), CD133/1 and HLA-DR. At same time 95% of cells expressed CD13, CD44, CD59, CD73, CD90, CD105, CD151 y CD166. Fenotype showed no differences in cells from different anatomic places. Cells from hip and knee subcutaneous showed a worst differentiation to hyaline cartilage. Hoffa fat cells showed high capacity in transforming to hyaline cartilage. Cells from different anatomic places show different chondrogenic potential that has to be considered to choose the cells source


Bone & Joint Research
Vol. 8, Issue 7 | Pages 290 - 303
1 Jul 2019
Li H Yang HH Sun ZG Tang HB Min JK

Objectives

The aim of this study was to provide a comprehensive understanding of alterations in messenger RNAs (mRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs) in cartilage affected by osteoarthritis (OA).

Methods

The expression profiles of mRNAs, lncRNAs, and circRNAs in OA cartilage were assessed using whole-transcriptome sequencing. Bioinformatics analyses included prediction and reannotation of novel lncRNAs and circRNAs, their classification, and their placement into subgroups. Gene ontology and pathway analysis were performed to identify differentially expressed genes (DEGs), differentially expressed lncRNAs (DELs), and differentially expressed circRNAs (DECs). We focused on the overlap of DEGs and targets of DELs previously identified in seven high-throughput studies. The top ten DELs were verified by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) in articular chondrocytes, both in vitro and in vivo.


Bone & Joint Research
Vol. 7, Issue 5 | Pages 343 - 350
1 May 2018
He A Ning Y Wen Y Cai Y Xu K Cai Y Han J Liu L Du Y Liang X Li P Fan Q Hao J Wang X Guo X Ma T Zhang F

Aim

Osteoarthritis (OA) is caused by complex interactions between genetic and environmental factors. Epigenetic mechanisms control the expression of genes and are likely to regulate the OA transcriptome. We performed integrative genomic analyses to define methylation-gene expression relationships in osteoarthritic cartilage.

Patients and Methods

Genome-wide DNA methylation profiling of articular cartilage from five patients with OA of the knee and five healthy controls was conducted using the Illumina Infinium HumanMethylation450 BeadChip (Illumina, San Diego, California). Other independent genome-wide mRNA expression profiles of articular cartilage from three patients with OA and three healthy controls were obtained from the Gene Expression Omnibus (GEO) database. Integrative pathway enrichment analysis of DNA methylation and mRNA expression profiles was performed using integrated analysis of cross-platform microarray and pathway software. Gene ontology (GO) analysis was conducted using the Database for Annotation, Visualization and Integrated Discovery (DAVID).


The Bone & Joint Journal
Vol. 99-B, Issue 5 | Pages 623 - 631
1 May 2017
Blaney J Harty H Doran E O’Brien S Hill J Dobie I Beverland D

Aims

Our aim was to examine the clinical and radiographic outcomes in 257 consecutive Oxford unicompartmental knee arthroplasties (OUKAs) (238 patients), five years post-operatively.

Patients and Methods

A retrospective evaluation was undertaken of patients treated between April 2008 and October 2010 in a regional centre by two non-designing surgeons with no previous experience of UKAs. The Oxford Knee Scores (OKSs) were recorded and fluoroscopically aligned radiographs were assessed post-operatively at one and five years.


The Bone & Joint Journal
Vol. 98-B, Issue 10_Supple_B | Pages 34 - 40
1 Oct 2016
Emerson RH Alnachoukati O Barrington J Ennin K

Aims

Approved by the Food and Drug Administration in 2004, the Phase III Oxford Medial Partial Knee is used to treat anteromedial osteoarthritis (AMOA) in patients with an intact anterior cruciate ligament. This unicompartmental knee arthroplasty (UKA) is relatively new in the United States, and therefore long-term American results are lacking.

Patients and Methods

This is a single surgeon, retrospective study based on prospectively collected data, analysing a consecutive series of primary UKAs using the Phase III mobile-bearing Oxford Knee and Phase III instrumentation.

Between July 2004 and December 2006, the senior author (RHE) carried out a medial UKA in 173 patients (213 knees) for anteromedial osteoarthritis or avascular necrosis (AVN).

A total of 95 patients were men and 78 were women. Their mean age at surgery was 67 years (38 to 89) and mean body mass index 29.87 kg/m2 (17 to 62).

The mean follow-up was ten years (4 to 11).


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 4 | Pages 411 - 421
1 Apr 2008
Pollard TCB Gwilym SE Carr AJ

Treatment strategies for osteoarthritis most commonly involve the removal or replacement of damaged joint tissue. Relatively few treatments attempt to arrest, slow down or reverse the disease process. Such options include peri-articular osteotomy around the hip or knee, and treatment of femoro-acetabular impingement, where early intervention may potentially alter the natural history of the disease. A relatively small proportion of patients with osteoarthritis have a clear predisposing factor that is both suitable for modification and who present early enough for intervention to be deemed worthwhile. This paper reviews recent advances in our understanding of the pathology, imaging and progression of early osteoarthritis.