Advertisement for orthosearch.org.uk
Results 1 - 14 of 14
Results per page:
Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 89 - 89
1 Sep 2012
Ackermann P Schizas N Bring D Li J Andersson T Fahlgren A Aspenberg P
Full Access

Introduction. Traumatized musculoskeletal tissue often exhibits prolonged time to healing, mostly due to low blood flow and innervation. Intermittent Pneumatic Compression (IPC) increases blood flow and decreases thromboembolic event after orthopedic surgery,[1] however little is known about healing effects.[2] We hypothesized that IPC could stimulate tissue repair: 1.) blood flow 2.) nerve ingrowth 3.) tissue proliferation and during immobilisation enhance 4.) biomechanical tissue properties. Methods. Study 1: In 104 male Sprague Dawley (SD) rats the right Achilles tendon was ruptured and the animals freely mobilized. Half the group received daily IPC-treatment, using a pump and cuff over the hindpaw that inflates/deflates cyclicly, 0–55mmHg (Biopress SystemTM, Flexcell Int.), and the other half received sham-treatment. Healing was assessed at 1,3,6 weeks by perfusion-analysis with laser doppler scanner (Perimed, Sweden), histology and biomechanical testing. Study 2: 48 male SD-rats were ruptured as above. Three groups of each 16 rats were either mobilized, immobilized or immobilized with IPC treatment. Immobilization was performed by plaster cast. Healing was assessed at 2 weeks with histology and biomechanical testing. Results. Study 1: At 3 and 6 weeks reperfusion increased by 21% and 23% (p< 0.05) after IPC-treatment, strengthened by the observation of elevated numbers of blood vessels and nerves. Fibroblast density was at all time points significantly increased in the IPC group. At three and six weeks the IPC treated tendons displayed an increased tissue organization confirmed by higher collagen I/III ratio in the IPC group. No differences (p = 0.10) were found regarding biomechanical strength. Study 2: Compared to mobilization, immobilization caused a downregulation (p<0.05) of all biomechanical and histological parameters, eg. maximum force decreased 80% and collagen III occurrence by 83%. However when immobilization was combined with IPC biomechanical and histological healing increased significantly compared to pure immobilization, eg. maximum force increased 63% and collagen III occurrence by 150%. Conclusion. This study demonstrated that IPC treatment can counteract biomechanical and morphological deficits caused by immobilization by enhancing proliferative soft tissue repair. Thus, IPC promotes tissue repair by stimulating tissue perfusion and nerve ingrowth as well as accelerating both fibroblast proliferation and collagen organization


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_16 | Pages 18 - 18
1 Apr 2013
Augat P Betz V Schroeder C Goettlinger M Jansson V Mueller PE Betz OB
Full Access

Common cell based strategies for treating bone defects require time-consuming and expensive isolation and expansion of autologous cells. We developed a novel expedited technology creating gene activated muscle grafts. We hypothesized that BMP-2 activated muscle grafts provide healing capabilities comparable to autologous bone grafting, the clinical gold standard. Two male, syngeneic Fischer 344 rats served as tissue donors. Muscle tissue was harvested from hind limbs and incubated with an adenoviral vector carrying the cDNA encoding BMP-2. Bone tissue was harvested from the iliac crest. Segmental bone defects were created in the right femora of 12 rats and were filled with either BMP-2 activated muscle tissue or bone grafts. After 8 weeks, femora were evaluated by radiographs, microCT, and biomechanical tests. BMP-2 activated muscle grafts and autologous bone grafts resulted in complete mineralization and healing, as documented by radiographs and microCT. Bone volume in the muscle graft defects (33+/-12mm3) was similar to autologous bone graft defects (39+/-5mm3). Torque at failure of the two groups was statistically indistinguishable (240+/-115 Nmm vs. 232+/-108Nmm). In previous experiments we demonstrated that the large segmental defect model in this study will not heal with either empty defects or non-activated muscle grafts. Our findings therefore demonstrate that BMP-2 gene activation of muscle tissue effectively stimulates defect healing similar to autologous bone grafts


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_16 | Pages 15 - 15
1 Apr 2013
Kim J Oh CW Oh JK Lee HJ Kyung HS
Full Access

Background. To establish relative fixation strengths of a single lateral locking plate, a double locking plate, and a tibial nail in treatment of proximal tibial extra-articular fractures. Methods. Three groups of composite tibial synthetic bones consisting of 5 specimens per group were included; lateral plating (LP) using a LCP-PLT (locking compression plate-proximal lateral tibia), double plating (DP) using a LCP-PLT and a LCP-MPT (locking compression plate-medial proximal tibia), and intramedullary nailing (IN) using an ETN (expert tibial nail). To simulate a comminuted fracture model, a gap osteotomy measuring 1 cm was cut 8 cm below the joint. For each tibia, a minimal preload of 100N was applied before loading to failure. A vertical load was applied at 25mm/min until tibia failure. Results. For axial loading, fixation strength of DP (14387.3N, SD=1852.1) was 17.5% greater than that of LP (12249.3N, SD=1371.6), and 60% less than that of IN (22879.6N, SD=1578.8) (p<0.001). For ultimate displacement in axial loading, similar results were observed for LP (5.74mm, SD=1.01) and DP (4.45mm, SD=0.96), with a larger displacement for IN (5.84mm, SD=0.99). Conclusion. In biomechanical testing of a comminuted proximal tibial fracture model, DP proved stronger than LP in terms of ultimate strength. IN proved strongest; however, DP may be an acceptable alternative for minimally invasive osteosynthesis, which may be technically difficult to fix using a nail


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_V | Pages 4 - 4
1 Mar 2012
Karuppiah S Downing M Broadbent R Christie M Carnegie C Ashcroft G Johnstone A
Full Access

Due to its popularity of intramedullary nails (IMN) high success rate, newer design (titanium) IMN system have been introduced to replace stainless steel system. However the stability provided by the titanium IMN. may not be adequate, there by influencing the union rate. We aimed to compare the results of both IMN systems via prospective clinical study and biomechanical testing using RSA. Biomechanical study. This study was done in an experimental set-up which consisted of a physically simulated femoral shaft fractures models fixed with a stainless steel (Russell Taylor) or Titanium (Trigen) IM nailing system. Two common fracture configurations with stimulated weight bearing conditions were used and the axis of fragment movements recorded. Clinical study. The data on two groups of patients were collected as part of a prospective cohort study. Details of the implant, such as size of nail, cross screw lengths, screw thickness, etc. was collected. Patients were followed up for a minimum of 4 months and details of clinical complications recorded. Biomechanical study. The degree of translation movement in comminuted fracture, using titanium IMN system, was 6 times more compared to stainless steel IMN system. Clinical study. The results show that there is a 5.7% of non union and 14% hardware problems with titanium based IMN system when compared to 2.2% non union in the stainless steel IMN system. Titanium based IM nailing system have a potential to inherent mechanical instability when used to treat comminuted fractures. This may explain some of the clinically observed delayed or non-union of femoral fractures


Bone & Joint Open
Vol. 2, Issue 10 | Pages 796 - 805
1 Oct 2021
Plumarom Y Wilkinson BG Willey MC An Q Marsh L Karam MD

Aims

The modified Radiological Union Scale for Tibia (mRUST) fractures score was developed in order to assess progress to union and define a numerical assessment of fracture healing of metadiaphyseal fractures. This score has been shown to be valuable in predicting radiological union; however, there is no information on the sensitivity, specificity, and accuracy of this index for various cut-off scores. The aim of this study is to evaluate sensitivity, specificity, accuracy, and cut-off points of the mRUST score for the diagnosis of metadiaphyseal fractures healing.

Methods

A cohort of 146 distal femur fractures were retrospectively identified at our institution. After excluding AO/OTA type B fractures, nonunions, follow-up less than 12 weeks, and patients aged less than 16 years, 104 sets of radiographs were included for analysis. Anteroposterior and lateral femur radiographs at six weeks, 12 weeks, 24 weeks, and final follow-up were separately scored by three surgeons using the mRUST score. The sensitivity and specificity of mean mRUST score were calculated using clinical and further radiological findings as a gold standard for ultimate fracture healing. A receiver operating characteristic curve was also performed to determine the cut-off points at each time point.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 487 - 487
1 Sep 2012
Giesinger K Yates P Stoffel K Ebneter L Day R Kuster M
Full Access

Introduction. Periprosthetic femur fractures are a serious complication after hip replacement surgery. In an aging population these fractures are becoming more and more common. Open reduction and plate osteosynthesis is one of the available treatment options. Objective. To investigate hip stem stability and cement mantle integrity under cyclic loading conditions after plate fixation with screws perforating the cement in the proximal fragment. Methods. Polished tapered hip stems were implanted in 16 biomechanical testing femora with Palacos cement (3rd generation technique) according to the manufacturer's recommendations. 8 testing bones were osteotomised distal to the stem representing the fracture group (Vancouver Type C). The osteotomy was fixed with a polyaxial locking plate, the other 8 specimens served as a control group. The specimens were tested in a biaxial material testing machine under axial compression (including adduction and torsion moments) for 100.000 cycles at physiological loads. Stem subsidence was measured in 3 planes with a stereoscopic image correlation system during the tests. Subsequently the sliced and crack dyed specimens were investigated microscopically for cement cracks. Results. In the control group no specimen failed during testing. There were no statistically significant differences in stem subsidence along the longitudinal axis (control group mean ± SD −15.4 ± 12.2 μm, fracture group −14.1 ± 13.1 μm). In the fracture group two specimens fractured through the most proximal screw hole after 74.000 and 80.000 cycles. Overall 15 out of 36 screws in the proximal fragment had direct stem contact. No cement cracks were detected in the sliced specimens in both groups. Conclusion. Drilling the cement mantle and placing screws in the cement did not increase stem subsidence under cyclic loading. No cracks or cement mantle failure were observed. Large screw diameters proximally weaken the lateral cortex resulting in tension failure of the bone. Plate fixation of a periprosthetic femoral fracture with a stable, cemented prosthesis does not lead to early cement mantle failure


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 531 - 531
1 Sep 2012
Raposo F Sousa A Valente L Moura Gonçalves A Loureiro M Duarte F São Simão R Freitas J Pinto R
Full Access

INTRODUCTION. Patellar tendon (PT) autograft is an excellent choice repairing anterior cruciate ligament (ACL) ruptures. Published studies testing the biomechanical characteristics after plasty usually refer to grafts with 10mm wide. The thickness of PT and geometry of the patella have been overlooked. The purpose of this study was to understand the geometry of PT and patella in our population, regarding their use in Bone - Patellar Tendon - Bone (BTB) technique, in order to evaluate their biomechanical efficiency and study their relationship with anthropometric parameters. MATERIAL. 100 individuals (50/50) who underwent knee MRI (3-Tesla). Ages between 18–65years. METHODS. Retrospective study. Standardized protocol for measuring the PT and patella based in MRI images. Interview to obtain personal data. Statistical analysis using SPSS®. RESULTS. Sample (mean ±SD): age 41 ±14years, weight 73 ±12kg, height 167 ±10cm, BMI 26,04 ±4,13; length PT/patella −41,3 ±6,1mm/29,6 ±4,2 mm, width PT/patella −25,3 ±3,2mm/43,4 ±4,14mm; thickness PT −3,79 ±1,01mm/22,8 ±2,2mm; Men have thicker and wider patella and PT than women (p<0.001). The patella is also longer in males (p<0.001). There is statistical significant relationship between weight and height to width, thickness and length of PT and patella (p<0.01). Body Mass Index (BMI) doesn't have statistical correlation with geometry of the PT and patella. DISCUSSION. The PT remains as an excellent option in ACL repair. The anatomy and quality of the graft are essential to achieving good functional results. The choice of middle third tendon to the BTB plasty does not always correspond to the 10mm width, as used in most biomechanical tests. Also patellar integrity can be at risk (when collecting the bone block) if patella geometry is not considered. To our knowledge, there is only one similar study in literature, preformed in Asian individuals. CONCLUSION. Preoperatively accessing the geometry of Patella and PT can be crucial in obtaining efficient grafts and decreasing morbidity over the extensor mechanism


The Bone & Joint Journal
Vol. 103-B, Issue 2 | Pages 294 - 298
1 Feb 2021
Hadeed MM Prakash H Yarboro SR Weiss DB

Aims

The aim of this study was to determine the immediate post-fixation stability of a distal tibial fracture fixed with an intramedullary nail using a biomechanical model. This was used as a surrogate for immediate weight-bearing postoperatively. The goal was to help inform postoperative protocols.

Methods

A biomechanical model of distal metaphyseal tibial fractures was created using a fourth-generation composite bone model. Three fracture patterns were tested: spiral, oblique, and multifragmented. Each fracture extended to within 4 cm to 5 cm of the plafond. The models were nearly-anatomically reduced and stabilized with an intramedullary nail and three distal locking screws. Cyclic loading was performed to simulate normal gait. Loading was completed in compression at 3,000 N at 1 Hz for a total of 70,000 cycles. Displacement (shortening, coronal and sagittal angulation) was measured at regular intervals.


The Bone & Joint Journal
Vol. 100-B, Issue 1 | Pages 95 - 100
1 Jan 2018
Evers J Fischer M Zderic I Wähnert D Richards RG Gueorguiev B Raschke MJ Ochman S

Aims

The aim of this study was to investigate the effect of a posterior malleolar fragment (PMF), with < 25% ankle joint surface, on pressure distribution and joint-stability. There is still little scientific evidence available to advise on the size of PMF, which is essential to provide treatment. To date, studies show inconsistent results and recommendations for surgical treatment date from 1940.

Materials and Methods

A total of 12 cadaveric ankles were assigned to two study groups. A trimalleolar fracture was created, followed by open reduction and internal fixation. PMF was fixed in Group I, but not in Group II. Intra-articular pressure was measured and cyclic loading was performed.


The Bone & Joint Journal
Vol. 96-B, Issue 10 | Pages 1378 - 1384
1 Oct 2014
Weiser L Korecki MA Sellenschloh K Fensky F Püschel K Morlock MM Rueger JM Lehmann W

It is becoming increasingly common for a patient to have ipsilateral hip and knee replacements. The inter-prosthetic (IP) distance, the distance between the tips of hip and knee prostheses, has been thought to be associated with an increased risk of IP fracture. Small gap distances are generally assumed to act as stress risers, although there is no real biomechanical evidence to support this.

The purpose of this study was to evaluate the influence of IP distance, cortical thickness and bone mineral density on the likelihood of an IP femoral fracture.

A total of 18 human femur specimens were randomised into three groups by bone density and cortical thickness. For each group, a defined IP distance of 35 mm, 80 mm or 160 mm was created by choosing the appropriate lengths of component. The maximum fracture strength was determined using a four-point bending test.

The fracture force of all three groups was similar (p = 0.498). There was a highly significant correlation between the cortical area and the fracture strength (r = 0.804, p <  0.001), whereas bone density showed no influence.

This study suggests that the IP distance has little influence on fracture strength in IP femoral fractures: the thickness of the cortex seems to be the decisive factor.

Cite this article: Bone Joint J 2014;96-B:1378–84.


The Bone & Joint Journal
Vol. 96-B, Issue 1 | Pages 114 - 121
1 Jan 2014
Pekmezci M McDonald E Buckley J Kandemir U

We investigated a new intramedullary locking nail that allows the distal interlocking screws to be locked to the nail. We compared fixation using this new implant with fixation using either a conventional nail or a locking plate in a laboratory simulation of an osteoporotic fracture of the distal femur. A total of 15 human cadaver femora were used to simulate an AO 33-A3 fracture pattern. Paired specimens compared fixation using either a locking or non-locking retrograde nail, and using either a locking retrograde nail or a locking plate. The constructs underwent cyclical loading to simulate single-leg stance up to 125 000 cycles. Axial and torsional stiffness and displacement, cycles to failure and modes of failure were recorded for each specimen. When compared with locking plate constructs, locking nail constructs had significantly longer mean fatigue life (75 800 cycles (sd 33 900) vs 12 800 cycles (sd 6100); p = 0.007) and mean axial stiffness (220 N/mm (sd 80) vs 70 N/mm (sd 18); p = 0.005), but lower mean torsional stiffness (2.5 Nm/° (sd 0.9) vs 5.1 Nm/° (sd 1.5); p = 0.008). In addition, in the nail group the mode of failure was either cut-out of the distal screws or breakage of nails, and in the locking plate group breakage of the plate was always the mode of failure. Locking nail constructs had significantly longer mean fatigue life than non-locking nail constructs (78 900 cycles (sd 25 600) vs 52 400 cycles (sd 22 500); p = 0.04).

The new locking retrograde femoral nail showed better stiffness and fatigue life than locking plates, and superior fatigue life to non-locking nails, which may be advantageous in elderly patients.

Cite this article: Bone Joint J 2014;96-B:114–21.


Bone & Joint Research
Vol. 2, Issue 8 | Pages 149 - 154
1 Aug 2013
Aurégan J Coyle RM Danoff JR Burky RE Akelina Y Rosenwasser MP

Objectives

One commonly used rat fracture model for bone and mineral research is a closed mid-shaft femur fracture as described by Bonnarens in 1984. Initially, this model was believed to create very reproducible fractures. However, there have been frequent reports of comminution and varying rates of complication. Given the importance of precise anticipation of those characteristics in laboratory research, we aimed to precisely estimate the rate of comminution, its importance and its effect on the amount of soft callus created. Furthermore, we aimed to precisely report the rate of complications such as death and infection.

Methods

We tested a rat model of femoral fracture on 84 rats based on Bonnarens’ original description. We used a proximal approach with trochanterotomy to insert the pin, a drop tower to create the fracture and a high-resolution fluoroscopic imager to detect the comminution. We weighed the soft callus on day seven and compared the soft callus parameters with the comminution status.


Bone & Joint Research
Vol. 2, Issue 2 | Pages 26 - 32
1 Feb 2013
Neumann H Schulz AP Gille J Klinger M Jürgens C Reimers N Kienast B

Objectives

Osteochondral injuries, if not treated adequately, often lead to severe osteoarthritis. Possible treatment options include refixation of the fragment or replacement therapies such as Pridie drilling, microfracture or osteochondral grafts, all of which have certain disadvantages. Only refixation of the fragment can produce a smooth and resilient joint surface. The aim of this study was the evaluation of an ultrasound-activated bioresorbable pin for the refixation of osteochondral fragments under physiological conditions.

Methods

In 16 Merino sheep, specific osteochondral fragments of the medial femoral condyle were produced and refixed with one of conventional bioresorbable pins, titanium screws or ultrasound-activated pins. Macro- and microscopic scoring was undertaken after three months.


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 12 | Pages 1602 - 1607
1 Dec 2008
Bogner R Hübner C Matis N Auffarth A Lederer S Resch H

The surgical treatment of three- and four-part fractures of the proximal humerus in osteoporotic bone is difficult and there is no consensus as to which technique leads to the best outcome in elderly patients. Between 1998 and 2004 we treated 76 patients aged over 70 years with three- or four-part fractures by percutaneous reduction and internal fixation using the Humerusblock.

A displacement of the tuberosity of > 5 mm and an angulation of > 30° of the head fragment were the indications for surgery.

Of the patients 50 (51 fractures) were available for follow-up after a mean of 33.8 months (5.8 to 81). The absolute, age-related and side-related Constant scores were recorded. Of the 51 fractures, 46 (90.2%) healed primarily. Re-displacement of fragments or migration of Kirschner wires was seen in five cases. Necrosis of the humeral head developed in four patients. In three patients a secondary arthroplasty had to be performed, in two because of re-displacement and in one for necrosis of the head. There was one case of deep infection which required a further operation and one of delayed healing.

The mean Constant score of the patients with a three-part fracture was 61.2 points (35 to 87) which was 84.9% of the score for the non-injured arm. In four-part fractures it was 49.5 points (18 to 87) or 68.5% of the score for the non-injured arm.

The Humerusblock technique can provide a comfortable and mobile shoulder in elderly patients and is a satisfactory alternative to replacement and traditional techniques of internal fixation.