Objectives: The development of effective fall prevention programs requires understanding of underlying causes of falls. Measurement tools are needed that predict the risk of falling and give objective
Introduction. Partial knee arthroplasty (PKA) has demonstrated the potential to improve patient satisfaction over total knee arthroplasty. It is however perceived as a more challenging procedure that requires precise adaptation to the complex mechanics of the knee. A recently developed PKA system aims to address these challenges by anatomical, compartment specific shapes and fine-tuned mechanical instrumentation. We investigated how closely this PKA system replicates the balance and kinematics of the intact knee. Materials and Methods. Eight post-mortem human knee specimens (age: 55±11 years, BMI: 23±5, 4 male, 4 female) underwent full leg CT scanning and comprehensive robotic (KUKA KR140 comp) assessments of tibiofemoral and patellofemoral kinematics. Specimens were tested in the intact state and after fixed bearing medial PKA. Implantations were performed by two experienced surgeons. Assessments included laxity testing (anterior-posterior: ±100 N, medial-lateral: ±100 N, internal-external: ±3 Nm, varus- valgus: ±12 Nm) under 2 compressive loads (44 N, 500 N) at 7 flexion angles and simulations of level walking, lunge and stair descent based on in-vivo loading profiles. Kinematics were tracked robotically and optically (OptiTrack) and represented by the femoral flexion facet center (FFC) motions. Similarity between intact and operated curves was expressed by the root mean square of deviations (RMSD) along the curves. Group data were summarized by average and standard deviation and compared using the paired Student's T-test (α = 0.05). Results. During the varus-valgus
Sagittal plane imbalance (SPI), or asymmetry between extension and flexion gaps, is an important issue in total knee arthroplasty (TKA). The purpose of this study was to compare SPI between kinematic alignment (KA), mechanical alignment (MA), and functional alignment (FA) strategies. In 137 robotic-assisted TKAs, extension and flexion stressed gap laxities and bone resections were measured. The primary outcome was the proportion and magnitude of medial and lateral SPI (gap differential > 2.0 mm) for KA, MA, and FA. Secondary outcomes were the proportion of knees with severe (> 4.0 mm) SPI, and resection thicknesses for each technique, with KA as reference.Aims
Methods
Backgrounds. In order to permit soft tissue balancing under more physiological conditions during total knee arthroplasties (TKAs), we developed an offset type tensor to obtain soft tissue balancing throughout the range of motion with reduced patella-femoral (PF) and aligned tibiofemoral joints and reported the intra-operative soft tissue
There are some reports that the invasive surgery of knee joint replacement repair static and dynamic balance. We investigated the changes in static and dynamic balance and muscle strength in pre- and postoperative of TKA and UKA for the purpose of assessing time dependent improvement. A total of 168 patients (137 TKA; mean age 75.3, 31 UKA; mean age 78.1) were recruited to the study. These patients underwent static and dynamic
Dislocation remains a common complication following total hip arthroplasty, second only to aseptic loosening as a cause of revision. Factors thought to play a role in dislocation include cup and stem alignment, soft tissue tension, surgical approach, patient factors, and design features of the prosthesis, including femoral head size. We analysed all consecutive total hip replacements at one institution over a 17 year period. Criteria for study inclusion were hips replaced due to primary osteoarthritis with no previous surgery, femoral head sizes of 28mm and 32mm only, and at least one year from date of surgery. 3682 hips fulfilled these criteria. All procedures were carried out using a posterolateral approach with enhanced posterior repair, and a standard method of intraoperative soft tissue
Dislocation remains a common complication following total hip arthroplasty, second only to aseptic loosening as a cause of revision. Factors thought to play a role in dislocation include cup and stem alignment, soft tissue tension, surgical approach, patient factors, and design features of the prosthesis, including femoral head size. We analysed all consecutive total hip replacements at one institution over a 17 year period. Criteria for study inclusion were hips replaced due to primary osteoarthritis with no previous surgery, femoral head sizes of 28mm and 32mm only, and at least one year from date of surgery. 3682 hips fulfilled these criteria. All procedures were carried out using a posterolateral approach with enhanced posterior repair, and a standard method of intraoperative soft tissue
It is unknown whether gap laxities measured in robotic arm-assisted total knee arthroplasty (TKA) correlate to load sensor measurements. The aim of this study was to determine whether symmetry of the maximum medial and lateral gaps in extension and flexion was predictive of knee balance in extension and flexion respectively using different maximum thresholds of intercompartmental load difference (ICLD) to define balance. A prospective cohort study of 165 patients undergoing functionally-aligned TKA was performed (176 TKAs). With trial components in situ, medial and lateral extension and flexion gaps were measured using robotic navigation while applying valgus and varus forces. The ICLD between medial and lateral compartments was measured in extension and flexion with the load sensor. The null hypothesis was that stressed gap symmetry would not correlate directly with sensor-defined soft tissue balance.Aims
Methods
ProFaNE, Prevention of Falls Network Europe, is a four year project, funded by the European Community Framework 5. It is a thematic network, coordinated by the University of Manchester, UK, with 25 partners across Europe. There are also Network Associates from a number of EU and non-EU countries who give their advice and experience at meetings, seminarsand conferences. The aim is to bring together workers from around Europe to focus on a series of tasks aimed at developing multi-factorial prevention programmes to reduce the incidence of falls and fractures amongst elderly people. The work of ProFaNE is practical, both in terms of developing the evidence base for implementation of effective interventions and encouraging best practice across Europe. The task of each work package is to convene workshops, undertake personnel exchanges and set up collaborative studies, data sharing in order to develop evidence based protocols and publications which can be used to implement change. Work Package 1 - Fall prevention trials - Taxonomy of interventions and agreed set of outcomes. An agreed and standardised set of outcome definitions and measures is important to improve the robustness of data from intervention studies, will enable comparison across studies, good quality measurement in multi-centre trials, and facilitate meta-analysis of trial results. A taxonomy of interventions will facilitate comparisons between studies, help to determine the most effective components or sub-components of interventions, and aid the decision making process of policy makers and health insurance plans. A Consensus taxonomy and outcome measures statement, Trial design statement, Meta - analysis protocol and Self help materials will be produced. Work Package 2 - Clinical Assessment and Outcomes. Aims to gain an understanding of the current issues surrounding falls prevention across Europe and to embrace at national and international level, the different political and health service agendas in each country such that recommendations can ultimately be translated into working models of practice. They will establish a robust network of key members across Europe to facilitate the effective and efficient promulgation of evidence likely to influence service developments at national and local level and derive a consensus approach to assessment and management of older people at risk of falling in a variety of clinical settings using the existing evidence base as well as inviting expert opinions in the field. Work Package 3 -
Total knee arthroplasty (TKA) using functional alignment aims to implant the components with minimal compromise of the soft-tissue envelope by restoring the plane and obliquity of the non-arthritic joint. The objective of this study was to determine the effect of TKA with functional alignment on mediolateral soft-tissue balance as assessed using intraoperative sensor-guided technology. This prospective study included 30 consecutive patients undergoing robotic-assisted TKA using the Stryker PS Triathlon implant with functional alignment. Intraoperative soft-tissue balance was assessed using sensor-guided technology after definitive component implantation; soft-tissue balance was defined as intercompartmental pressure difference (ICPD) of < 15 psi. Medial and lateral compartment pressures were recorded at 10°, 45°, and 90° of knee flexion. This study included 18 females (60%) and 12 males (40%) with a mean age of 65.2 years (SD 9.3). Mean preoperative hip-knee-ankle deformity was 6.3° varus (SD 2.7°).Aims
Methods
As residency training programmes around the globe
move towards competency-based medical education (CBME), there is
a need to review current teaching and assessment practices as they
relate to education in orthopaedic trauma. Assessment is the cornerstone
of CBME, as it not only helps to determine when a trainee is fit
to practice independently, but it also provides feedback on performance
and guides the development of competence. Although a standardised
core knowledge base for trauma care has been developed by the leading
national accreditation bodies and international agencies that teach
and perform research in orthopaedic trauma, educators have not yet established
optimal methods for assessing trainees’ performance in managing
orthopaedic trauma patients. This review describes the existing knowledge from the literature
on assessment in orthopaedic trauma and highlights initiatives that
have recently been undertaken towards CBME in the United Kingdom,
Canada and the United States. In order to support a CBME approach, programmes need to improve
the frequency and quality of assessments and improve on current
formative and summative feedback techniques in order to enhance
resident education in orthopaedic trauma. Cite this article:
Smart trials are total knee tibial trial liners
with load bearing and alignment sensors that will graphically show quantitative
compartment load-bearing forces and component track patterns. These
values will demonstrate asymmetrical ligament balancing and misalignments
with the medial retinaculum temporarily closed. Currently surgeons
use feel and visual estimation of imbalance to assess soft-tissue
balancing and tracking with the medial retinaculum open, which results
in lower medial compartment loads and a wider anteroposterior tibial
tracking pattern. The sensor trial will aid the total knee replacement
surgeon in performing soft-tissue balancing by providing quantitative
visual feedback of changes in forces while performing the releases
incrementally. Initial experience using a smart tibial trial is
presented.
We have investigated whether control of balance is improved during stance and gait and sit-to-stand tasks after unilateral total hip replacement undertaken for osteoarthritis of the hip. We examined 25 patients with a mean age of 67 years ( Before surgery, control of balance during gait and sit-to-stand tasks was abnormal in patients with severe osteoarthritis of the hip, while balance during stance was similar to that of the healthy control group. After total hip replacement, there was a progressive improvement at four and 12 months for most gait and sit-to-stand tasks and in the time needed to complete them. By 12 months, the values approached those of the control group. However, trunk pitch (forwards-backwards) and roll (side-to-side) velocities were less stable (greater than the control) when walking over barriers as was roll for the sit-to-stand task, indicative of a residual deficit of balance. Our data suggest that patients with symptomatic osteoarthritis of the hip have marked deficits of balance in gait tasks, which may explain the increased risk of falling which has been reported in some epidemiological studies. However, total hip replacement may help these patients to regain almost normal control of balance for some gait tasks, as we found in this study. Despite the improvement in most components of balance, however, the deficit in the control of trunk velocity during gait suggests that a cautious follow-up is required after total hip replacement regarding the risk of a fall, especially in the elderly.