Advertisement for orthosearch.org.uk
Results 1 - 4 of 4
Results per page:
Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 52 - 52
1 Dec 2020
Elma T Selek HY Çuhadar T Tokgöz MA Yapar A
Full Access

Antibiotic-laden bone cement is an important strategy of treatment for an established bone infection. It was aimed to find the safe antibiotic dose intervals of the antibiotic cements soaked in Phosphate Buffered Saline solution and to determine whether there was a difference in terms of mechanical strength between the prepared samples. This study was done in our institute Microbiology and Metallurgy laboratories. All samples were prepared using manual mixing technique using 40 g radiopaque Biomet® Bone cement (Zimmer Biomet, Indiana, USA) under sterile conditions at 19 ± 2 ºC. In this study, vancomycin (4 groups − 0.5, 2, 4, 6 g), teicoplanin (4 groups − 0.8, 1.2, 2, 2.4 g), daptomycin (4 groups − 1, 2, 2.5, 3 g), piperacillin-tazobactam (4 groups − 0.125, 0.5, 1, 2 g) and meropenem (4 groups − 0.5, 2, 4, 6 g) were measured in a assay balance and added to the cement powder. Antibiotic levels ranged from the lowest 0.625% to the highest 15%. 80×10×4 mm rectangle prism-shaped sample for mechanical measurements in accordance to ISO 5833 standart and 12×6×1 mm disc-shaped samples for microbiological assesments were used. Four sample for each antibiotic dose and control group was made. Prepared samples were evaluated macroscopically and faulty samples were excluded from the study. Prepared samples were kept in Phosphate Buffered Saline solution renewed every 24 hours at 37 ºC. At the end of 6 weeks, all samples were tested with Instron ® 3369 (Norwood Massachusetts, USA) four point bending test. Staphylococcus aureus (ATCC 29213) strain was used for samples of antibiotics containing vancomycin, teicoplanin and daptomycin after the samples prepared for antibiotic release were maintained under sterile conditions and kept in Phosphate Buffered Saline solution as appropriate. For samples containing meropenem and piperacillin - tazobactam antibiotics, Pseudomonas aeruginosa (ATCC 27853) strain was used. The addition of more than 5% antibiotics to the cement powder was significantly reduced mechanical strength in all groups(p <0.05) however the power of significance was changed depending on the type of antibiotic. In general, adding antibiotics with 2.5% and less for cement amount was not cause significant changes in mechanical measurements. There was a negative correlation between the increase in the amount of antibiotics mixed with cement and the durability of the cement (p: <0.001, r: −0.883 to 0.914). In this study, especially the antibacterial effects of piperacillin-tazobactam, containing 0.25 gr and 0.5 gr antibiotic doses, were found to be low. There was no bacterial growth in all other groups for 21 days. Considering the mechanical properties of groups containing meropenem, vancomycin, daptomycin and teicoplanin, it was observed that all antibiotic cements remained above the limit value of 50 MPa in the bending test at concentrations containing 2.5% and less antibiotics. This was not achieved for the piperacillin-tazobactam group. The findings of the study showed that each antibiotic has different MPa values at different doses. Therefore, it could be concluded that not only the antibiotic dose but also the type oould change the mechanical properties. In the light of these findings, mixing more than 2.5% antibiotics in cement for the antibiotic types included in the study was ineffective in terms of antibacterial effect and mechanically reduces the durability of cement below the standard value of 50 MPa


Bone & Joint Research
Vol. 6, Issue 3 | Pages 132 - 136
1 Mar 2017
Yuenyongviwat V Ingviya N Pathaburee P Tangtrakulwanich B

Objectives

Vancomycin and fosfomycin are antibiotics commonly used to treat methicillin-resistant Staphylococcus aureus (MRSA) infection. This study compares the in vitro inhibitory effects against MRSA of articulating cement spacers impregnated with either vancomycin or fosfomycin.

Methods

Vancomycin-impregnated articulating cement spacers and fosfomycin-impregnated articulating cement spacers were immersed in sterile phosphate-buffered saline (PBS) solutions and then incubated. Samples were collected for bioactivity evaluation. The aliquots were tested for MRSA inhibition with the disc diffusion method, and the inhibition zone diameters were measured. The inhibition zone differences were evaluated using the Wilcoxon Rank Sum Test.


Bone & Joint 360
Vol. 3, Issue 3 | Pages 39 - 40
1 Jun 2014
Arastu M


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 3 | Pages 421 - 425
1 Mar 2005
Blom AW Cunningham JL Hughes G Lawes TJ Smith N Blunn G Learmonth ID Goodship AE

This study investigates the use of porous biphasic ceramics as graft extenders in impaction grafting of the femur during revision hip surgery.

Impaction grafting of the femur was performed in four groups of sheep. Group one received pure allograft, group two 50% allograft and 50% BoneSave, group three 50% allograft and 50% BoneSave type 2 and group four 10% allograft and 90% BoneSave as the graft material. Function was assessed using an index of pre- and post-operative peak vertical ground reaction force ratios. Changes in bone mineral density were measured by dual energy X ray absorptiometry (DEXA) scanning. Loosening and subsidence were assessed radiographically and by histological examination of the explanted specimens.

There was no statistically significant difference between the four groups after 18 months of unrestricted functional loading for all outcome measures.