Aims. Dual-mobility (DM) components are increasingly used to prevent and treat dislocation after total hip arthroplasty (THA). Intraprosthetic dissociation (IPD) is a rare complication of DM that is believed to have decreased with contemporary implants. This study aimed to report incidence, treatment, and outcomes of contemporary DM IPD. Methods. A total of 1,453 DM components were implanted at a single academic institution between January 2010 and December 2021: 695 in primary and 758 in revision THA. Of these, 49 presented with a dislocation of the large DM head and five presented with an IPD. At the time of closed reduction of the large DM dislocation, six additional IPDs occurred. The mean age was 64 years (SD 9.6), 54.5% were female (n = 6), and mean follow-up was 4.2 years (SD 1.8). Of the 11 IPDs, seven had a history of instability, five had abductor insufficiency, four had prior lumbar fusion, and two were conversions for failed fracture management. Results. The incidence of IPD was 0.76%. Of the 11 IPDs, ten were missed either at presentation or after attempted reduction. All ten patients with a missed IPD were discharged with a presumed reduction. The mean time from IPD to surgical treatment was three weeks (0 to 23). One patient died after IPD prior to revision. Of the ten remaining hips with IPD, the DM head was exchanged in two, four underwent
Aims. Dislocation remains a significant complication after total hip arthroplasty (THA), being the third leading indication for revision. We present a series of
Fifty-five patients undergoing isolated
The need for supplementary screw fixation in
Aims. This single-centre observational study aimed to describe the results of extensive bone impaction grafting of the whole acetabular cavity in combination with an uncemented component in
A common finding in
We present an update of the clinical and radiological results of 62 consecutive
Introduction. The management of periprosthetic pelvic bone loss is a challenging problem in hip revision surgery. This study evaluates the minimum 10-year clinical and radiographic outcome of major column structural allografts combined with the Burch-Schneider antiprotrusio cage for acetabular reconstruction. Methods. From January 1992 to August 2005, 106 hips with periprosthetic osteolysis underwent
Porous-coated acetabular hemispherical components have proven successful in all but the most severe
Aims. The purpose of this study is to report our updated results at a minimum follow-up of 30 years using a first generation uncemented tapered femoral component in primary total hip arthroplasty (THA). Methods. The original cohort consisted of 145 consecutive THAs performed by a single surgeon in 138 patients. A total of 37 patients (40 hips) survived a minimum of 30 years, and are the focus of this review. The femoral component used in all cases was a first-generation Taperloc with a non-modular 28 mm femoral head. Clinical follow-up at a minimum of 30 years was obtained on every living patient. Radiological follow-up at 30 years was obtained on all but four. Results. Seven femoral components (18%) required revision, and none for septic loosening. Four well fixed stems were removed during
Aims. This study reports the results of 38 total hip arthroplasties (THAs) in 33 patients aged less than 50 years, using the JRI Furlong hydroxyapatite ceramic (HAC)-coated femoral component. Methods. We describe the survival, radiological, and functional outcomes of 33 patients (38 THAs) at a mean follow-up of 27 years (25 to 32) between 1988 and 2018. Results. Of the surviving 30 patients (34 THAs), there were four periprosthetic fractures: one underwent femoral revision after 21 years, two had surgical fixation as the stem was deemed stable, and one was treated nonoperatively due to the patient’s comorbidities. The periprosthetic fracture patients showed radiological evidence of change in bone stock around the femoral stem, which may have contributed to the fractures; this was reflected in change of the canal flare index at the proximal femur. Two patients (two hips) were lost to follow-up. Using aseptic loosening as the endpoint, 16 patients (18 hips; 48%) needed
There is evidence that recommends the retention of a well-fixed cement mantle at the time of revision hip arthroplasty. The cement-cement interface has been proven to have greater shear strength than a new bone-cement interface after removing a well-fixed cement mantle. This study reviewed a series of
The indications for cementless acetabular fixation have been broadened because our data supports the use of trabecular metal cups even when there's limited bleeding host bone contact. Trabecular metal augments have allowed us to use cementless cups when there is segmental loss of bone. Surgical Technique: The acetabular bed is prepared. If there is less medial bone stock than 2 mm, then morselised allograft is impacted by reverse reaming. When reaming is complete and less than 50% bleeding host bone is available for cup stabilization, then a trabecular metal cup is indicated. Trabecular augments are used if the trabecular cup trial is not stable, or if it is uncovered by 40% or more. The conventional augments come in different sizes to accommodate the diameter of the cup and the size of the defect. Larger defects are addressed with anterior and posterior column augments, and superior defects with figure of seven augments. Augments are fixed with at least two screws. The interface between the cup and the augments should be stable, but some surgeons place a very thin layer of cement between the augment and cup so micromotion does not occur while ingrowth is occurring. We have used trabecular metal augments in 46
Structural bulk autografts restore the severe bone loss at primary hip arthroplasty in dysplastic hips and have shown to have good long term outcomes. There are only a few reports of revision arthroplasty for these sockets that fail eventually. We report on a series of such primary hips which underwent cemented revision of the socket for aseptic loosening and their outcomes. A retrospective review was performed from our database to identify fifteen
Introduction. Reinforcement ring with allograft bone is commonly used for acetabular reconstruction of bone defects because it can achieve stable initial fixation of the prosthesis. It is not clear whether the allograft bone can function as a viable host bone and provide long-standing structural support. The purpose of this study was to assess to long-term survival of the reinforcement rings and allograft bone incorporation after
Fracture of contemporary femoral stems is a rare occurrence. Earlier THR stems failed due to design issues or post manufacturing heat treatments that weakened the core metal. Our group identified and analyzed 4 contemporary fractured femoral stems after revision surgery in which electrochemical welds contributed to the failure. All four stems were proximally porous coated titanium alloy components. All failures occurred in the neck region post revision surgery in an acetabular cup exchange. All were men and obese. The fractures occurred at an average of 3.6 years post THR redo (range, 1.0–6.5 years) and 8.3 years post index surgery (range, 5.5–12.0 years). To demonstrate the effect of electrocautery on retained femoral stems following revision surgery, we applied intermittent electrosurgical currents at three intensities (30, 60, 90 watts) to the polished neck surface of a titanium alloy stem under dry conditions. At all power settings, visible discoloration and damage to the polished neck surface was observed. The localized patterns and altered metal surface features exhibited were like the electrosurgically-induced damage priorly reported. The neck regions of all components studied displayed extensive mechanical and/or electrocautery damage in the area of fracture initiation. The use of mechanical instruments and electrocautery was documented to remove tissues in all 4 cases. The combination of mechanical and electrocautery damage to the femoral neck and stem served as an initiation point and stress riser for subsequent fractures. The electrocautery and mechanical damage across the fracture site observed occurred iatrogenically during revision surgery. The notch effect, particularly in titanium alloys, due to mechanical and/or electrocautery damage, further reduced the fatigue strength at the fractured femoral necks. While electrocautery and mechanical dissection is often required during revision THA, these failures highlight the need for caution during this step of the procedure in cases where the femoral stem is retained.
The indications for cementless acetabular fixation have been broadened because our data supports the use of trabecular metal cups even when there's limited bleeding host bone contact. Trabecular metal augments have allowed us to use cementless cups when there is segmental loss of bone. Surgical Technique: The acetabular bed is prepared. If there is less medial bone stock than 2mm, then morselised allograft is impacted by reverse reaming. When reaming is complete and less than 50% bleeding host bone is available for cup stabilisation, then a trabecular metal cup is indicated. Trabecular augments are used if the trabecular cup trial is not stable, or if it is uncovered by 40% or more. The conventional augments come in different sizes to accommodate the diameter of the cup and the size of the defect. Larger defects are addressed with anterior and posterior column augments, and superior defects with figure of seven augments. Augments are fixed with at least two screws. The interface between the cup and the augments should be stable, but some surgeons place a very thin layer of cement between the augment and cup so micromotion does not occur while ingrowth is occurring. We have used trabecular metal augments in 46
Aims: This study evaluates the clinical results of
The indications for cementless acetabular fixation have been broadened because our data supports the use of trabecular metal cups even when there's limited bleeding host bone contact. Trabecular metal augments have allowed us to use cementless cups when there is segmental loss of bone. Surgical Technique:. The acetabular bed is prepared. If there is less medial bone stock than 2mm, then morselised allograft is impacted by reverse reaming. When reaming is complete and less than 50% bleeding host bone is available for cup stabilization, then a trabecular metal cup is indicated. Trabecular augments are used if the trabecular cup trial is not stable, or if it is uncovered by 40% or more. The conventional augments come in different sizes to accommodate the diameter of the cup and the size of the defect. Larger defects are addressed with anterior and posterior column augments, and superior defects with figure of seven augments. Augments are fixed with at least two screws. The interface between the cup and the augments should be stable, but some surgeons place a very thin layer of cement between the augment and cup so micromotion does not occur while ingrowth is occurring. We have used trabecular metal augments in 46
The indications for cementless acetabular fixation have been broadened because our data supports the use of trabecular metal cups even when there's limited bleeding host bone contact. Trabecular metal augments have allowed us to use cementless cups when there is segmental loss of bone. Surgical Technique: The acetabular bed is prepared. If there is less medial bone stock than 2 mm, then morselised allograft is impacted by reverse reaming. When reaming is complete and less than 50% bleeding host bone is available for cup stabilization, then a trabecular metal cup is indicated. Trabecular augments are used if the trabecular cup trial is not stable, or if it is uncovered by 40% or more. The conventional augments come in different sizes to accommodate the diameter of the cup and the size of the defect. Larger defects are addressed with anterior and posterior column augments, and superior defects with figure of seven augments. Augments are fixed with at least two screws. The interface between the cup and the augments should be stable, but some surgeons place a very thin layer of cement between the augment and cup so micromotion does not occur while ingrowth is occurring. We have used trabecular metal augments in 46