Advertisement for orthosearch.org.uk
Results 1 - 5 of 5
Results per page:
Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_15 | Pages 35 - 35
7 Aug 2024
Alotibi FS Hendrick P Moffatt F
Full Access

Background. Immersive virtual reality (VR) demonstrates potential benefits in patients with chronic low back pain (CLBP). However, few studies have investigated the feasibility and the acceptability of introducing immersive VR for use with patients with CLBP and in the Kingdom of Saudi Arabia (KSA). Aim. To investigate immersive VR's feasibility, tolerability, and acceptability as a rehabilitation intervention for adult patients with CLBP and explore the views of relevant Health Care Practitioners (HCPs) in the KSA. Methodology and Methods. A multi-centre, mixed-methods, explanatory sequential design was adopted to test immersive VR's feasibility, tolerability, and acceptability. An uncontrolled feasibility trial was conducted. The immersive VR intervention involved a training session followed by three sessions over one week using commercially available hardware and software. Feasibility outcomes were collected from patients immediately post-intervention. Patients and HCPs were recruited for semi-structured interviews. Results. Thirty-three patients and three HCPs were recruited. The feasibility a priori criteria were met for recruitment, retention, dropout, completeness of questionnaire data, treatment compliance and fidelity. Adverse events included one who reported aggravation of tinnitus, whereas two experienced dizziness. Qualitative data suggested that entertainment and motivation were key enablers. Barriers included technological capability and HCPs’ perceptions that immersive VR was time-consuming. Conclusion. The results suggested that immersive VR was feasible, acceptable, and tolerable among patients with CLBP and HCPs in clinical settings in the KSA. Further research focusing on the effectiveness is warranted in this field. Conflicts of Interest. None. Sources of Funding. None. Trial registration number. ISRCTN14434517


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_9 | Pages 32 - 32
1 Oct 2022
Astek A Sparkes V Sheeran L
Full Access

Background. Chronic low back pain (CLBP) is the leading cause of disability worldwide. Immersive virtual reality (IVR) can be delivered using head mounted display (HMD) to interact with 3D virtual environment (VE). IVR has shown promising results in management of chronic pain conditions, using different mechanisms (e.g., exposure to movement and distraction). However, it has not been widely tested for CLBP. Future development of IVR intervention needs inputs from gatekeepers to determine key considerations, facilitators and barriers. This qualitative study aimed to explore views and opinions of physiotherapists about IVR intervention for adults with CLBP. Methods. Four focus groups were conducted online, with 16 physiotherapists. A demonstration of existing IVR mechanisms was presented. The data were transcribed and analysed through descriptive thematic analysis. Results. IVR was thought to be a suitable adjunct for a subgroup of patients who are reluctant to engage with standard care. Motivation to perform challenging physical tasks was believed to be a potential benefit. Safety, possibility of addiction, and transferability of acquired skills from VE to ‘real world’ and hygiene were concerns and the intervention was preferred to be used under clinical supervision. VE personalisation to patient's goal and preference with delivery and progression being gradual depending upon patient's abilities was suggested. Technical knowledge was seen as a facilitator, while cost and technology acceptance were barriers for future implementation. Conclusion. Future studies would need to consider the reported views of physiotherapists to inform development and implementation of IVR intervention for CLBP. Conflicts of interest: No conflict of interest. Sources of funding: Funded by the government of Saudi Arabia


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_15 | Pages 34 - 34
7 Aug 2024
Alghamdi MN Sparkes V Khot S Davies J
Full Access

Background. Embodiment- and distraction-based approaches to immersive virtual reality (IVR) show promise in treating persistent low back pain (PLBP). However, which approach is more effective is unclear. This study aims to evaluate the impact of distraction- and embodiment-based IVR on pain processing and patient-reported outcome measures in PLBP. Method. Individuals with PLBP were randomised to receive eight sessions of either distraction- or embodiment-based IVR over two weeks. Outcome measures were evaluated at baseline and after the eighth session. Pain processing was evaluated using conditioned pain modulation (CPM) and temporal summation (TS). Results. Three participants (n=2 embodiment, n=1 distraction) have completed all eight IVR sessions. Preliminary results indicate a decrease from pre to post-intervention in Numerical Pain Rating Scale score (pre: 5/10, 6/10, 5/10; post: 2/10, 5/10, 2/10) and Pain Catastrophising Scale score (pre: 34/52, 11/52, 38/52; post: 11/52, 8/52, 12/52), with no clear trend in other self-reported measures (Hospital Anxiety and Depression scale, Oswestry low back disability questionnaire, fear-avoidance beliefs questionnaire, Tampa scale of kinesiophobia). Preliminary results suggest a potential increase in NPRS absolute values from pre- to post-intervention in CPM (pre: -2.7, -2.3, -2.0; post: -3.3, -2.0, -4.3) and TS (pre-1.2, 2.5, 2.4; post: 1.4, 2.5, 3.1). Conclusion. Eight sessions of IVR may reduce pain severity and pain catastrophising in people with PLBP and may increase the efficacy of endogenous pain modulatory systems. Data collection is ongoing to compare the effect of distraction- and embodiment-based IVR. Conflicts of Interest. There are no conflicts of interest. Sources of Funding. This project is funded by the Saudi Arabia Cultural Bureau


The Bone & Joint Journal
Vol. 102-B, Issue 3 | Pages 371 - 375
1 Mar 2020
Cawley D Dhokia R Sales J Darwish N Molloy S

With the identification of literature shortfalls on the techniques employed in intraoperative navigated (ION) spinal surgery, we outline a number of measures which have been synthesised into a coherent operative technique. These include positioning, dissection, management of the reference frame, the grip, the angle of attack, the drill, the template, the pedicle screw, the wire, and navigated intrathecal analgesia. Optimizing techniques to improve accuracy allow an overall reduction of the repetition of the surgical steps with its associated productivity benefits including time, cost, radiation, and safety.

Cite this article: Bone Joint J 2020;102-B(3):371–375.


Bone & Joint Open
Vol. 3, Issue 5 | Pages 348 - 358
1 May 2022
Stokes S Drozda M Lee C

This review provides a concise outline of the advances made in the care of patients and to the quality of life after a traumatic spinal cord injury (SCI) over the last century. Despite these improvements reversal of the neurological injury is not yet possible. Instead, current treatment is limited to providing symptomatic relief, avoiding secondary insults and preventing additional sequelae. However, with an ever-advancing technology and deeper understanding of the damaged spinal cord, this appears increasingly conceivable. A brief synopsis of the most prominent challenges facing both clinicians and research scientists in developing functional treatments for a progressively complex injury are presented. Moreover, the multiple mechanisms by which damage propagates many months after the original injury requires a multifaceted approach to ameliorate the human spinal cord. We discuss potential methods to protect the spinal cord from damage, and to manipulate the inherent inhibition of the spinal cord to regeneration and repair. Although acute and chronic SCI share common final pathways resulting in cell death and neurological deficits, the underlying putative mechanisms of chronic SCI and the treatments are not covered in this review.