Advertisement for orthosearch.org.uk
Results 1 - 8 of 8
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_11 | Pages 18 - 18
7 Jun 2023
Schapira B Spanoudakis E Jaiswal P Patel A
Full Access

Surgical trainees are finding it increasingly more challenging to meet operative requirements and coupled with the effects of COVID-19, we face a future of insufficiently trained surgeons. As a result, virtual reality (VR) simulator training has become more prevalent and whilst more readily accepted in certain arthroscopic fields, its use in hip arthroscopy (HA) remains novel. This project aimed to validate VR high-fidelity HA simulation and assess its functional use in arthroscopic training. Seventy-two participants were recruited to perform two basic arthroscopic tasks on a VR HA simulator, testing hip anatomy, scope manipulation and triangulation skills. They were stratified into novice (39) and experienced (33) groups based on previous arthroscopy experience. Metric parameters recorded from the simulator were used to assess construct validity. Face validity was evaluated using a Likert-style questionnaire. All recordings were reviewed by 2 HA experts for blinded ASSET score assessment. Experienced participants were significantly faster in completing both tasks compared with novice participants (p<0.001). Experienced participants damaged the acetabular and femoral cartilage significantly less than novice participants (p=0.011) and were found to have significantly reduced path length of both camera and instrument across both tasks (p=0.001, p=0.007), demonstrating significantly greater movement economy. Total ASSET scores were significantly greater in experienced participants compared to novice participants (p=0.041) with excellent correlation between task time, cartilage damage, camera and instrument path length and corresponding ASSET score constituents. 62.5% of experienced participants reported a high degree of realism in all facets of external, technical and haptic experience with 94.4% advising further practice would improve their arthroscopic skills. There was a relative improvement of 43% in skill amongst all participants between task 1 and 2 (p<0.001). This is the largest study to date validating the use of simulation in HA training. These results confirm significant construct and face validity, excellent agreement between objective measures and ASSET scores, significant improvement in skill with continued use and recommend VR simulation to be a valuable asset in HA training for all grades


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_11 | Pages 40 - 40
7 Jun 2023
Edwards T Soussi D Gupta S Khan S Patel A Patil A Badri D Liddle A Cobb J Logishetty K
Full Access

Superior teamwork in the operating theatre is associated with improved technical performance and clinical outcomes. Yet modern rota patterns, workforce shortages, and increasing complexity of surgery, means that there is less familiarity between staff and the required choreography. Immersive Virtual Reality (iVR) can successfully train surgical staff individually, however iVR team training has yet to be investigated. We aimed to design a multiplayer iVR platform for anterior approach total hip arthroplasty (AA-THA) and assess if multiplayer iVR training was superior to single player training for acquisition of both technical and non-technical skills. An iVR platform with choreographed roles for the surgeon and scrub nurse was developed using Cognitive Task Analysis. Forty participants were randomised to individual or team iVR training. Individually- trained participants practiced alongside virtual avatar counterparts, whilst teams trained live in pairs. Both groups underwent five iVR training sessions over 6-weeks. Subsequently, they underwent a real-life assessment in which they performed AA-THA on a high-fidelity model with real equipment in a simulated theatre. Teams performed together and individually trained participants were randomly paired up. Videos were marked by two blinded assessors recording the NOTSS, NOTECHS II and SPLINTS scores - validated technical and non-technical scores assessing surgeon and scrub nurse skills. Secondary outcomes were procedure time and number of technical errors. Teams outperformed individually trained participants for non-technical skills in the real-world assessment (NOTSS 13.1 ± 1.5 vs 10.6 ± 1.6, p =0.002, NOTECHS-II score 51.7 ± 5.5 vs 42.3 ± 5.6, p=0.001 and SPLINTS 10 ± 1.2 vs 7.9 ± 1.6, p = 0.004). They completed the assessment 28.1% faster (27.2 minutes ± 5.5 vs 41.8 ±8.9, p<0.001), and made fewer than half the number of technical errors (10.4 ± 6.1 vs 22.6 ± 5.4, p<0.001). Multiplayer training leads to faster surgery with fewer technical errors and the development of superior non-technical skills for anterior approach total hip arthroplasty. The convention of surgeons and nurses training separately, but undertaking real complex surgery together, can be supplanted by team training, delivered through immersive virtual reality


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_12 | Pages 46 - 46
1 Jun 2017
Lawrence J Khanduja V Audenaert E
Full Access

Hip arthroscopy is a rapidly expanding technique that has a steep learning curve. Simulation may have a role in helping trainees overcome this. However there is as yet no validated hip arthroscopy simulator. This study aimed to test the construct validity of a virtual reality hip arthroscopy simulator. Nineteen orthopaedic surgeons performed a simulated arthroscopic examination of a healthy hip joint in the supine position. Surgeons were categorized as either expert (those who had performed 250 hip arthroscopies or more) or novice (those who had performed fewer than this). Twenty-one targets were visualized within joint; nine via the anterior portal, nine via the anterolateral and three via the posterolateral. This was followed by a task testing basic probe examination of the joint in which a series of eight targets were probed via the anterolateral portal. Each surgeon's performance was evaluated by the simulator using a set of pre-defined metrics including task duration, number of soft tissue & bone collisions, and distance travelled by instruments. No repeat attempts at the tasks were permitted. Construct validity was then evaluated by comparing novice and expert group performance metrics over the two tasks using the Mann–Whitney test, with a p value of less than 0.05 considered significant. On the visualization task, the expert group outperformed the novice group on time taken (P=0.0003), number of collisions with soft tissue (P=0.001), number of collisions with bone (P=0.002) and distance travelled by the arthroscope (P=0.02). On the probe examination, the two groups differed only in the time taken to complete the task (P=0.025). Increased experience in hip arthroscopy was reflected by significantly better performance on the VR simulator across two tasks, supporting its construct validity. This study validates a virtual reality hip arthroscopy simulator and supports its potential for developing basic arthroscopic skills


The Bone & Joint Journal
Vol. 101-B, Issue 12 | Pages 1585 - 1592
1 Dec 2019
Logishetty K Rudran B Cobb JP

Aims. Arthroplasty skills need to be acquired safely during training, yet operative experience is increasingly hard to acquire by trainees. Virtual reality (VR) training using headsets and motion-tracked controllers can simulate complex open procedures in a fully immersive operating theatre. The present study aimed to determine if trainees trained using VR perform better than those using conventional preparation for performing total hip arthroplasty (THA). Patients and Methods. A total of 24 surgical trainees (seven female, 17 male; mean age 29 years (28 to 31)) volunteered to participate in this observer-blinded 1:1 randomized controlled trial. They had no prior experience of anterior approach THA. Of these 24 trainees, 12 completed a six-week VR training programme in a simulation laboratory, while the other 12 received only conventional preparatory materials for learning THA. All trainees then performed a cadaveric THA, assessed independently by two hip surgeons. The primary outcome was technical and non-technical surgical performance measured by a THA-specific procedure-based assessment (PBA). Secondary outcomes were step completion measured by a task-specific checklist, error in acetabular component orientation, and procedure duration. Results. VR-trained surgeons performed at a higher level than controls, with a median PBA of Level 3a (procedure performed with minimal guidance or intervention) versus Level 2a (guidance required for most/all of the procedure or part performed). VR-trained surgeons completed 33% more key steps than controls (mean 22 (. sd. 3) vs 12 (. sd. 3)), were 12° more accurate in component orientation (mean error 4° (. sd. 6°) vs 16° (. sd. 17°)), and were 18% faster (mean 42 minutes (. sd. 7) vs 51 minutes (. sd. 9)). Conclusion. Procedural knowledge and psychomotor skills for THA learned in VR were transferred to cadaveric performance. Basic preparatory materials had limited value for trainees learning a new technique. VR training advanced trainees further up the learning curve, enabling highly precise component orientation and more efficient surgery. VR could augment traditional surgical training to improve how surgeons learn complex open procedures. Cite this article: Bone Joint J 2019;101-B:1585–1592


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_9 | Pages 6 - 6
1 May 2018
Bartlett J Lawrence J Yan M Guevel B Stewart M Khanduja V
Full Access

Introduction. Decreases in trainees' working hours, coupled with evidence of worse outcomes when hip arthroscopies are performed by inexperienced surgeons, mandate the development of additional means of arthroscopic training. Though virtual reality simulation training has been adopted by other surgical specialities, its slow uptake in arthroscopic training is due to a lack of evidence as to its benefits. These benefits can be demonstrated through learning curves associated with simulator training – with practice reflecting measurable increases in validated performance metrics. Materials & Methods. Twenty-five medical students completed seven simulated arthroscopies of a healthy virtual hip joint in the supine position on a simulator previously shown to have construct validity. Twelve targets had to be visualised within the central compartment; six via the anterior portal, three via the anterolateral portal and three via the posterolateral portal. Eight students proceeded to complete seven probe examinations of a healthy virtual hip joint. Eight targets were probed via the anterolateral portal. Task duration, number of collisions with soft tissue and bone, and distance travelled by arthroscope were measured by the simulator for every session. Results. A learning curve was demonstrated by the students, with significant improvements in time taken (P<0.01), number of collisions (P<0.01), collision severity (P<0.01), and efficiency of movement (P<0.01). The largest difference between consecutive sessions was seen between sessions 1 and 2, with sessions thereafter showing only minimal rates of improvement. Similar improvements were found in the probe examination with students showing significant improvements in time taken (P<0.01), number of collisions (P<0.01), collision severity (P<0.01) and distance travelled by arthroscope (P<0.01). Conclusion. The results of this study demonstrate a learning curve for a previously validated hip arthroscopy simulator, confirming improved performance with repeated use. These results support the use of virtual reality as a potential means of developing basic hip arthroscopic skills


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_6 | Pages 27 - 27
1 May 2019
Logishetty K Rudran B Gofton W Beaule P Cobb J
Full Access

Background. Virtual Reality (VR) uses headsets and motion-tracked controllers so surgeons can perform simulated total hip arthroplasty (THA) in a fully-immersive, interactive 3D operating theatre. The aim of this study was to investigate the effect of laboratory-based VR training on the ability of surgical trainees to perform direct anterior approach THA on cadavers. Methods. Eighteen surgical trainees (CT1-ST4) with no prior experience of direct anterior approach (DAA) THA completed an intensive 1-day course (lectures, dry-bone workshops and technique demonstrations). They were randomised to either a 5-week protocol of VR simulator training or conventional preparation (operation manuals and observation of real surgery). Trainees performed DAA-THA on cadaveric hips, assisted by a passive scrub nurse and surgical assistant. Performance was measured on the Intercollegiate Surgical Curriculum Project (ISCP) procedure-based assessment (PBA), on a 9-point global summary score (Table 1). This was independently assessed by 2 hip surgeons blinded to group allocation. The secondary outcome measure was error in cup orientation from a predefined target (40° inclination and 20° anteversion). Results. Surgeons trained using VR performed a cadaveric DAA-THA significantly better than those using conventional preparation, as assessed by acetabular cup orientation (p<0.001) and using the ISCP-PBA. Two VR surgeons achieved Level 3b, 6 were graded at Level 3a, and 1 was graded at Level 2b. Six non-VR surgeons achieved Level 2a and 3 were graded at Level 1b. Discussion. These data demonstrate transfer of procedural knowledge and psychomotor skills learnt from VR to a real-world setting. Conventional preparation had limited value for novice surgeons learning arthroplasty. VR training advanced them further up the learning curve. Implications. Virtual reality can augment surgical training for open procedures in orthopaedics curve, so opportunities in real surgery can be maximised. This has implications for how surgical training is delivered for surgeons learning a new, complex procedure. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_11 | Pages 37 - 37
7 Jun 2023
Edwards T Kablean-Howard F Poole I Edwards J Karia M Liddle A Cobb J Logishetty K
Full Access

Superior team performance in surgery leads to fewer technical errors, reduced mortality, and improved patient outcomes. Scrub nurses are a pivotal part of this team, however they have very little structured training, leading to high levels of stress, low confidence, inefficiency, and potential for harm. Immersive virtual reality (iVR) simulation has demonstrated excellent efficacy in training surgeons. We tested the efficacy of an iVR curriculum for training scrub nurses in performing their role in an anterior approach total hip arthroplasty (AA-THA). Sixty nursing students were included in this study and randomised in a 1:1 ratio to learning the scrub nurse role for an AA-THA using either conventional training or iVR. The training was derived through expert consensus with senior surgeons, scrub nurses and industry reps. Conventional training consisted of a 1-hour seminar and 2 hours of e-learning where participants were taught the equipment and sequence of steps. The iVR training involved 3 separate hour-long sessions where participants performed the scrub nurse role with an avatar surgeon in a virtual operation. The primary outcome was their performance in a physical world practical objective assessment with real equipment. Data were confirmed parametric using the Shapiro-Wilk test and means compared using the independent samples student's t-test. 53 participants successfully completed the study (26 iVR, 27 conventional) with a mean age of 31±9 years. There were no significant differences in baseline characteristics or baseline knowledge test scores between the two groups (p>0.05). The iVR group significantly outperformed the conventionally trained group in the real-world assessment, scoring 66.9±17.9% vs 41.3±16.7%, p<0.0001. iVR is an easily accessible, low cost training modality which could be integrated into scrub nursing curricula to address the current shortfall in training. Prolonged operating times are strongly associated with an increased risk of developing serious complications. By upskilling scrub nurses, operations may proceed more efficiently which in turn may improve patient safety


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_6 | Pages 18 - 18
1 May 2019
Logishetty K Rudran B Gofton W Beaule P Field R Cobb J
Full Access

Background. For total hip arthroplasty (THA), cognitive training prior to performing real surgery may be an effective adjunct alongside simulation to shorten the learning curve. This study sought to create a cognitive training tool to perform direct anterior approach THA, validated by expert surgeons; and test its use as a training tool compared to conventional material. Methods. We employed a modified Delphi method with four expert surgeons from three international centres of excellence. Surgeons were independently observed performing THA before undergoing semi-structured cognitive task analysis (CTA) before completing successive rounds of electronic surveys until consensus. The agreed CTA was incorporated into a mobile and web-based platform. Forty surgical trainees (CT1-ST4) were randomised to CTA-training or a digital op-tech with surgical videos, before performing a simulated DAA THA in a validated fully-immersive virtual reality simulator. Results. Experts reached 100% consensus after five rounds. They defined THA in 46 steps and 52 decision points in 8 distinct procedural phases. Each phase comprised of a set of actions, cognitive demands, and critical errors and strategies. This CTA was mapped onto an open-access web-based learning tool [1]. Surgeons who prepared with CTA performed a simulated THA more efficiently (Time: 26 vs. 36 minutes and Procedural steps: 64 vs. 78), with fewer errors in instrument selection (22 vs 34 instances) and help required (6 vs. 19 instances), and with more accuracy (acetabular cup inclination error: 7° vs. 12°, anteversion error: 11° vs 19°) than those who prepared with conventional material. Discussion. This is the first validated CTA tool for arthroplasty. It provides structure for competency-based learning of this complex procedure. It is more effective at preparing orthopaedic trainees for a new procedure than conventional materials, for learning sequence, instrumentation and motor skills. Implications. Cognitive training combines education on decision making, knowledge and technical skill. It is a validated educational tool to upskill surgeons to perform hip arthroplasty and could replace current training and preparation methods for junior surgeons