Advertisement for orthosearch.org.uk
Results 1 - 16 of 16
Results per page:
Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_9 | Pages 32 - 32
1 Oct 2022
Astek A Sparkes V Sheeran L
Full Access

Background. Chronic low back pain (CLBP) is the leading cause of disability worldwide. Immersive virtual reality (IVR) can be delivered using head mounted display (HMD) to interact with 3D virtual environment (VE). IVR has shown promising results in management of chronic pain conditions, using different mechanisms (e.g., exposure to movement and distraction). However, it has not been widely tested for CLBP. Future development of IVR intervention needs inputs from gatekeepers to determine key considerations, facilitators and barriers. This qualitative study aimed to explore views and opinions of physiotherapists about IVR intervention for adults with CLBP. Methods. Four focus groups were conducted online, with 16 physiotherapists. A demonstration of existing IVR mechanisms was presented. The data were transcribed and analysed through descriptive thematic analysis. Results. IVR was thought to be a suitable adjunct for a subgroup of patients who are reluctant to engage with standard care. Motivation to perform challenging physical tasks was believed to be a potential benefit. Safety, possibility of addiction, and transferability of acquired skills from VE to ‘real world’ and hygiene were concerns and the intervention was preferred to be used under clinical supervision. VE personalisation to patient's goal and preference with delivery and progression being gradual depending upon patient's abilities was suggested. Technical knowledge was seen as a facilitator, while cost and technology acceptance were barriers for future implementation. Conclusion. Future studies would need to consider the reported views of physiotherapists to inform development and implementation of IVR intervention for CLBP. Conflicts of interest: No conflict of interest. Sources of funding: Funded by the government of Saudi Arabia


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_15 | Pages 35 - 35
7 Aug 2024
Alotibi FS Hendrick P Moffatt F
Full Access

Background. Immersive virtual reality (VR) demonstrates potential benefits in patients with chronic low back pain (CLBP). However, few studies have investigated the feasibility and the acceptability of introducing immersive VR for use with patients with CLBP and in the Kingdom of Saudi Arabia (KSA). Aim. To investigate immersive VR's feasibility, tolerability, and acceptability as a rehabilitation intervention for adult patients with CLBP and explore the views of relevant Health Care Practitioners (HCPs) in the KSA. Methodology and Methods. A multi-centre, mixed-methods, explanatory sequential design was adopted to test immersive VR's feasibility, tolerability, and acceptability. An uncontrolled feasibility trial was conducted. The immersive VR intervention involved a training session followed by three sessions over one week using commercially available hardware and software. Feasibility outcomes were collected from patients immediately post-intervention. Patients and HCPs were recruited for semi-structured interviews. Results. Thirty-three patients and three HCPs were recruited. The feasibility a priori criteria were met for recruitment, retention, dropout, completeness of questionnaire data, treatment compliance and fidelity. Adverse events included one who reported aggravation of tinnitus, whereas two experienced dizziness. Qualitative data suggested that entertainment and motivation were key enablers. Barriers included technological capability and HCPs’ perceptions that immersive VR was time-consuming. Conclusion. The results suggested that immersive VR was feasible, acceptable, and tolerable among patients with CLBP and HCPs in clinical settings in the KSA. Further research focusing on the effectiveness is warranted in this field. Conflicts of Interest. None. Sources of Funding. None. Trial registration number. ISRCTN14434517


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_15 | Pages 34 - 34
7 Aug 2024
Alghamdi MN Sparkes V Khot S Davies J
Full Access

Background. Embodiment- and distraction-based approaches to immersive virtual reality (IVR) show promise in treating persistent low back pain (PLBP). However, which approach is more effective is unclear. This study aims to evaluate the impact of distraction- and embodiment-based IVR on pain processing and patient-reported outcome measures in PLBP. Method. Individuals with PLBP were randomised to receive eight sessions of either distraction- or embodiment-based IVR over two weeks. Outcome measures were evaluated at baseline and after the eighth session. Pain processing was evaluated using conditioned pain modulation (CPM) and temporal summation (TS). Results. Three participants (n=2 embodiment, n=1 distraction) have completed all eight IVR sessions. Preliminary results indicate a decrease from pre to post-intervention in Numerical Pain Rating Scale score (pre: 5/10, 6/10, 5/10; post: 2/10, 5/10, 2/10) and Pain Catastrophising Scale score (pre: 34/52, 11/52, 38/52; post: 11/52, 8/52, 12/52), with no clear trend in other self-reported measures (Hospital Anxiety and Depression scale, Oswestry low back disability questionnaire, fear-avoidance beliefs questionnaire, Tampa scale of kinesiophobia). Preliminary results suggest a potential increase in NPRS absolute values from pre- to post-intervention in CPM (pre: -2.7, -2.3, -2.0; post: -3.3, -2.0, -4.3) and TS (pre-1.2, 2.5, 2.4; post: 1.4, 2.5, 3.1). Conclusion. Eight sessions of IVR may reduce pain severity and pain catastrophising in people with PLBP and may increase the efficacy of endogenous pain modulatory systems. Data collection is ongoing to compare the effect of distraction- and embodiment-based IVR. Conflicts of Interest. There are no conflicts of interest. Sources of Funding. This project is funded by the Saudi Arabia Cultural Bureau


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_10 | Pages 44 - 44
1 Oct 2019
Watt T Abbott C Oxborrow N Siddique I Verma R Angus M
Full Access

Purpose. A Virtual Spinal Clinic (VSC) was set-up at a regional spinal referral centre to see if patient care could be improved through early advice to provide timely management, early onward referral, improve patient satisfaction and minimise chronicity. The clinic was based on the successful virtual model used throughout the country within orthopaedic fracture clinics. VSC is a Consultant led multi-disciplinary (MDT) clinic run by Advanced Practitioners (AP). Methods. A 3-month trial of the VSC was completed bi-weekly. Patients diagnosed with conservatively managed spinal fractures were referred from the on-call service. A management plan was devised by a Consultant Spinal Surgeon and communicated to patients by the AP via a telephone-call consultation where clinical advice and management could be discussed. Results. 23 clinics completed. 271 patient contacts. 216 reviewed virtually. Completed outcomes of VSC. 34.65% Discharged. 51.18% Routine appointment. 14.17% Urgent appointment. Conclusion. VSC successfully completed safe and timely assessments, management plans, telephone consultations and onward referrals for Greater Manchester patients with acute spinal fractures. Patients had earlier access to health professionals to provide advice, reassurance, complete onward referrals and safety-netting. Patient satisfaction improved, with patient reporting the telephone consultation was reassuring and allowed early return to previous function. VSC reduced patients waiting time for a follow-up appointment and reduced patients travel time across Greater Manchester. In the future, it is hoped that the 6-week follow-up telephone call service will be utilised more as VSC develops. No conflicts of interest. No funding obtained


The Bone & Joint Journal
Vol. 104-B, Issue 1 | Pages 112 - 119
1 Jan 2022
Pietton R Bouloussa H Langlais T Taytard J Beydon N Skalli W Vergari C Vialle R

Aims. This study addressed two questions: first, does surgical correction of an idiopathic scoliosis increase the volume of the rib cage, and second, is it possible to evaluate the change in lung function after corrective surgery for adolescent idiopathic scoliosis (AIS) using biplanar radiographs of the ribcage with 3D reconstruction?. Methods. A total of 45 patients with a thoracic AIS which needed surgical correction and fusion were included in a prospective study. All patients underwent pulmonary function testing (PFT) and low-dose biplanar radiographs both preoperatively and one year after surgery. The following measurements were recorded: forced vital capacity (FVC), slow vital capacity (SVC), and total lung capacity (TLC). Rib cage volume (RCV), maximum rib hump, main thoracic curve Cobb angle (MCCA), medial-lateral and anteroposterior diameter, and T4-T12 kyphosis were calculated from 3D reconstructions of the biplanar radiographs. Results. All spinal and thoracic measurements improved significantly after surgery (p < 0.001). RCV increased from 4.9 l (SD 1) preoperatively to 5.3 l (SD 0.9) (p < 0.001) while TLC increased from 4.1 l (SD 0.9) preoperatively to 4.3 l (SD 0.8) (p < 0.001). RCV was correlated with all functional indexes before and after correction of the deformity. Improvement in RCV was weakly correlated with correction of the mean thoracic Cobb angle (p = 0.006). The difference in TLC was significantly correlated with changes in RCV (p = 0.041). It was possible to predict postoperative TLC from the postoperative RCV. Conclusion. 3D rib cage assessment from biplanar radiographs could be a minimally invasive method of estimating pulmonary function before and after spinal fusion in patients with an AIS. The 3D RCV reflects virtual chest capacity and hence pulmonary function in this group of patients. Cite this article: Bone Joint J 2022;104-B(1):112–119


Bone & Joint Open
Vol. 3, Issue 5 | Pages 348 - 358
1 May 2022
Stokes S Drozda M Lee C

This review provides a concise outline of the advances made in the care of patients and to the quality of life after a traumatic spinal cord injury (SCI) over the last century. Despite these improvements reversal of the neurological injury is not yet possible. Instead, current treatment is limited to providing symptomatic relief, avoiding secondary insults and preventing additional sequelae. However, with an ever-advancing technology and deeper understanding of the damaged spinal cord, this appears increasingly conceivable. A brief synopsis of the most prominent challenges facing both clinicians and research scientists in developing functional treatments for a progressively complex injury are presented. Moreover, the multiple mechanisms by which damage propagates many months after the original injury requires a multifaceted approach to ameliorate the human spinal cord. We discuss potential methods to protect the spinal cord from damage, and to manipulate the inherent inhibition of the spinal cord to regeneration and repair. Although acute and chronic SCI share common final pathways resulting in cell death and neurological deficits, the underlying putative mechanisms of chronic SCI and the treatments are not covered in this review.


Bone & Joint Research
Vol. 10, Issue 12 | Pages 797 - 806
8 Dec 2021
Chevalier Y Matsuura M Krüger S Traxler H Fleege† C Rauschmann M Schilling C

Aims

Anchorage of pedicle screw rod instrumentation in the elderly spine with poor bone quality remains challenging. Our study aims to evaluate how the screw bone anchorage is affected by screw design, bone quality, loading conditions, and cementing techniques.

Methods

Micro-finite element (µFE) models were created from micro-CT (μCT) scans of vertebrae implanted with two types of pedicle screws (L: Ennovate and R: S4). Simulations were conducted for a 10 mm radius region of interest (ROI) around each screw and for a full vertebra (FV) where different cementing scenarios were simulated around the screw tips. Stiffness was calculated in pull-out and anterior bending loads.


The Bone & Joint Journal
Vol. 103-B, Issue 4 | Pages 725 - 733
1 Apr 2021
Lai MKL Cheung PWH Samartzis D Karppinen J Cheung KMC Cheung JPY

Aims

The aim of this study was to determine the differences in spinal imaging characteristics between subjects with or without lumbar developmental spinal stenosis (DSS) in a population-based cohort.

Methods

This was a radiological analysis of 2,387 participants who underwent L1-S1 MRI. Means and ranges were calculated for age, sex, BMI, and MRI measurements. Anteroposterior (AP) vertebral canal diameters were used to differentiate those with DSS from controls. Other imaging parameters included vertebral body dimensions, spinal canal dimensions, disc degeneration scores, and facet joint orientation. Mann-Whitney U and chi-squared tests were conducted to search for measurement differences between those with DSS and controls. In order to identify possible associations between DSS and MRI parameters, those who were statistically significant in the univariate binary logistic regression were included in a multivariate stepwise logistic regression after adjusting for demographics. Odds ratios (ORs) and 95% confidence intervals (CIs) were reported where appropriate.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_X | Pages 139 - 139
1 Apr 2012
Pal D Bayley E Magaji S Boszczyk B
Full Access

Different methods of lateral mass(LM) screw placement in the cervical spine have been described. In the axial plane, 30 degrees is the recommended angle to avoid neurovascular injury. The estimation of this angle remains arbitrary and operator dependant. To assess how accurately the lateral trajectory angle (LTA) for cervical LM screws is achieved by visual estimation amongst experienced spinal surgeons. A sawbone model of cervical spine with simulated lordosis was used. Five spinal consultants and five senior spinal fellows were asked to insert 1.6 mm K wires into lateral masses of C3 to C6 bilaterally to simulate screws. The LTA in transverse plane was measured using a customised protractor. Basic statistical analyses of all the data were obtained. Using all the angles derived, a virtual screw trajectory was drawn in the lateral plane, on a normal axial Computerised Tomography scan of cervical spine of an anonymous patient using PACS system. The overall mean LTA for the group was 25.15 degrees, that of the fellows 24.4 and consultants 26.2 degrees. Mean deviation from 30 degrees for fellows was 5.2 and 6.4 degrees for consultants. Overall standard deviation was 4.78, for fellows and consultants it was 3.3 and 5.8 respectively. Two episodes of vertebral artery injury occurred at 15 and 16 degrees with simulated angles on CT. A moderate variability in visual estimation of the trajectory angle exists even amongst experienced surgeons during insertion of cervical LM screws. An anatomical landmark would be useful to improve the reliability of the procedure


The Bone & Joint Journal
Vol. 103-B, Issue 2 | Pages 373 - 381
1 Feb 2021
Strube P Gunold M Müller T Leimert M Sachse A Pumberger M Putzier M Zippelius T

Aims

The aim of the present study was to answer the question whether curve morphology and location have an influence on rigid conservative treatment in patients with adolescent idiopathic scoliosis (AIS).

Methods

We retrospectively analyzed AIS in 127 patients with single and double curves who had been treated with a Chêneau brace and physiotherapeutic specific exercises (B-PSE). The inclusion criteria were the presence of structural major curves ≥ 20° and < 50° (Risser stage 0 to 2) at the time when B-PSE was initiated. The patients were divided into two groups according to the outcome of treatment: failure (curve progression to ≥ 45° or surgery) and success (curve progression < 45° and no surgery). The main curve type (MCT), curve magnitude, and length (overall, above and below the apex), apical rotation, initial curve correction, flexibility, and derotation by the brace were compared between the two groups.


The Bone & Joint Journal
Vol. 103-B, Issue 1 | Pages 131 - 140
1 Jan 2021
Lai MKL Cheung PWH Samartzis D Karppinen J Cheung KMC Cheung JPY

Aims

To study the associations of lumbar developmental spinal stenosis (DSS) with low back pain (LBP), radicular leg pain, and disability.

Methods

This was a cross-sectional study of 2,206 subjects along with L1-S1 axial and sagittal MRI. Clinical and radiological information regarding their demographics, workload, smoking habits, anteroposterior (AP) vertebral canal diameter, spondylolisthesis, and MRI changes were evaluated. Mann-Whitney U tests and chi-squared tests were conducted to search for differences between subjects with and without DSS. Associations of LBP and radicular pain reported within one month (30 days) and one year (365 days) of the MRI, with clinical and radiological information, were also investigated by utilizing univariate and multivariate logistic regressions.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXVI | Pages 85 - 85
1 Jun 2012
Rajasekaran S Kanna R Shetty A
Full Access

Study design. Prospective clinical and radiological analysis of children with complex cervical deformities for the safety of cervical pedicle screw insertion. Objectives. To analyse the possibility, safety and efficacy of cervical pedicle screw insertion in complex pediatric cervical deformities, where conventional stabilisation techniques would not have provided rigid fixation. Summary of Background Data. Although the usage of cervical pedicle screws (CPS) in adults has become established, the feasibility and safety of its application in children has not been described previously in the literature. Methods. Sixteen children of mean age 9.7 ± 2.6 years (range: 3 - 13) requiring spinal stabilization for cranio-vertebral junction anomalies (n=10), cervico-thoracic kyphosis/ kyphoscoliosis (n=5) and cervical tumor excision (n=1) formed the study group. Feasibility of CPS insertion was assessed by computerised tomography images. Standard 3.0 mm titanium pedicle screws were inserted using intraoperative Iso-C C arm based 3 D computer navigation and the containment was post operatively evaluated with CT scan. Results. Based on preoperative CT imaging, 55 pedicles were selected for screw fixation. Intra operatively CPS was successfully inserted at 51 levels and at four sclerosed pedicles (7.3%), screws could not be inserted. At 42 levels, the screws were inserted in the classical description of pedicle screw application and in nine deformed vertebra, the screws were inserted in a non-classical fashion, taking purchase in the three columns of the cervical vertebra. Forty five (88.3%) screws were fully contained, six (11.7 %) had a non-critical breach and none had a critical breach. No perioperative complications related to pedicle screw insertion were noted. Conclusion. Safe insertion of cervical pedicle screws is possible in children. Iso-C navigation provides real time virtual imaging and improves the safety and accuracy of successful pedicle fixation even in altered vertebral anatomy. Pedicle width morphometrics do not restrict screw insertion


The Bone & Joint Journal
Vol. 102-B, Issue 3 | Pages 371 - 375
1 Mar 2020
Cawley D Dhokia R Sales J Darwish N Molloy S

With the identification of literature shortfalls on the techniques employed in intraoperative navigated (ION) spinal surgery, we outline a number of measures which have been synthesised into a coherent operative technique. These include positioning, dissection, management of the reference frame, the grip, the angle of attack, the drill, the template, the pedicle screw, the wire, and navigated intrathecal analgesia. Optimizing techniques to improve accuracy allow an overall reduction of the repetition of the surgical steps with its associated productivity benefits including time, cost, radiation, and safety.

Cite this article: Bone Joint J 2020;102-B(3):371–375.


The Bone & Joint Journal
Vol. 102-B, Issue 1 | Pages 5 - 10
1 Jan 2020
Cawley DT Rajamani V Cawley M Selvadurai S Gibson A Molloy S

Aims

Intraoperative 3D navigation (ION) allows high accuracy to be achieved in spinal surgery, but poor workflow has prevented its widespread uptake. The technical demands on ION when used in patients with adolescent idiopathic scoliosis (AIS) are higher than for other more established indications. Lean principles have been applied to industry and to health care with good effects. While ensuring optimal accuracy of instrumentation and safety, the implementation of ION and its associated productivity was evaluated in this study for AIS surgery in order to enhance the workflow of this technique. The aim was to optimize the use of ION by the application of lean principles in AIS surgery.

Methods

A total of 20 consecutive patients with AIS were treated with ION corrective spinal surgery. Both qualitative and quantitative analysis was performed with real-time modifications. Operating time, scan time, dose length product (measure of CT radiation exposure), use of fluoroscopy, the influence of the reference frame, blood loss, and neuromonitoring were assessed.


Bone & Joint Research
Vol. 7, Issue 1 | Pages 28 - 35
1 Jan 2018
Huang H Nightingale RW Dang ABC

Objectives

Loss of motion following spine segment fusion results in increased strain in the adjacent motion segments. However, to date, studies on the biomechanics of the cervical spine have not assessed the role of coupled motions in the lumbar spine. Accordingly, we investigated the biomechanics of the cervical spine following cervical fusion and lumbar fusion during simulated whiplash using a whole-human finite element (FE) model to simulate coupled motions of the spine.

Methods

A previously validated FE model of the human body in the driver-occupant position was used to investigate cervical hyperextension injury. The cervical spine was subjected to simulated whiplash exposure in accordance with Euro NCAP (the European New Car Assessment Programme) testing using the whole human FE model. The coupled motions between the cervical spine and lumbar spine were assessed by evaluating the biomechanical effects of simulated cervical fusion and lumbar fusion.


The Bone & Joint Journal
Vol. 95-B, Issue 10 | Pages 1308 - 1316
1 Oct 2013
Stokes OM Luk KDK

Adolescent idiopathic scoliosis affects about 3% of children. Non-operative measures are aimed at altering the natural history to maintain the size of the curve below 40° at skeletal maturity. The application of braces to treat spinal deformity pre-dates the era of evidence-based medicine, and there is a paucity of irrefutable prospective evidence in the literature to support their use and their effectiveness has been questioned.

This review considers this evidence. The weight of the evidence is in favour of bracing over observation. The most recent literature has moved away from addressing this question, and instead focuses on developments in the design of braces and ways to improve compliance.

Cite this article: Bone Joint J 2013;95-B:1308–16.