Introduction. Analysing the results of angular stable osteosynthesis in large groups of patients can give us an indication of the possibilities and limitations of both angular stable nailing and plating. Material and Methods. Fractures have been classified using the AO-classification system. To judge
This article presents a unified clinical theory
that links established facts about the physiology of bone and homeostasis,
with those involved in the healing of fractures and the development
of nonunion. The key to this theory is the concept that the tissue
that forms in and around a fracture should be considered a specific
functional entity. This ‘bone-healing unit’ produces a physiological
response to its biological and mechanical environment, which leads
to the normal healing of bone. This tissue responds to mechanical
forces and functions according to Wolff’s law, Perren’s strain theory
and Frost’s concept of the “mechanostat”. In response to the local
mechanical environment, the bone-healing unit normally changes with
time, producing different tissues that can tolerate various levels
of strain. The normal result is the formation of bone that bridges
the fracture – healing by callus. Nonunion occurs when the bone-healing
unit fails either due to mechanical or biological problems or a
combination of both. In clinical practice, the majority of nonunions
are due to mechanical problems with instability, resulting in too
much strain at the fracture site. In most nonunions, there is an
intact bone-healing unit. We suggest that this maintains its biological
potential to heal, but fails to function due to the mechanical conditions.
The theory predicts the healing pattern of multifragmentary fractures
and the observed morphological characteristics of different nonunions.
It suggests that the majority of nonunions will heal if the correct
mechanical environment is produced by surgery, without the need
for biological adjuncts such as autologous bone graft. Cite this article:
Deep bone and joint infections (DBJI) are directly intertwined with health, demographic change towards an elderly population, and wellbeing. The elderly human population is more prone to acquire infections, and the consequences such as pain, reduced quality of life, morbidity, absence from work and premature retirement due to disability place significant burdens on already strained healthcare systems and societal budgets. DBJIs are less responsive to systemic antibiotics because of poor vascular perfusion in necrotic bone, large bone defects and persistent biofilm-based infection. Emerging bacterial resistance poses a major threat and new innovative treatment modalities are urgently needed to curb its current trajectory. We present a new biphasic ceramic bone substitute consisting of hydroxyapatite and calcium sulphate for local antibiotic delivery in combination with bone regeneration. Gentamicin release was measured in four setups: 1) Objectives
Materials and Methods
Nonunion is one of the most troublesome complications to treat
in orthopaedics. Former authors believed that atrophic nonunion
occurred as a result of lack of mesenchymal stem cells (MSCs). We
evaluated the number and viability of MSCs in site of atrophic nonunion compared
with those in iliac crest. We enrolled five patients with neglected atrophic nonunions of
long bones confirmed by clinical examinations and plain radiographs
into this study. As much as 10 ml bone marrow aspirate was obtained
from both the nonunion site and the iliac crest and cultured for
three weeks. Cell numbers were counted using a haemocytometer and
vitality of the cells was determined by trypan blue staining. The
cells were confirmed as MSCs by evaluating their expression marker
(CD 105, CD 73, HLA-DR, CD 34, CD 45, CD 14, and CD 19). Cells number and
viability were compared between the nonunion and iliac creat sites.Objectives
Methods
The biomembrane (induced membrane) formed around polymethylmethacrylate (PMMA) spacers has value in clinical applications for bone defect reconstruction. Few studies have evaluated its cellular, molecular or stem cell features. Our objective was to characterise induced membrane morphology, molecular features and osteogenic stem cell characteristics. Following Institutional Review Board approval, biomembrane specimens were obtained from 12 patient surgeries for management of segmental bony defects (mean patient age 40.7 years, standard deviation 14.4). Biomembranes from nine tibias and three femurs were processed for morphologic, molecular or stem cell analyses. Gene expression was determined using the Affymetrix GeneChip Operating Software (GCOS). Molecular analyses compared biomembrane gene expression patterns with a mineralising osteoblast culture, and gene expression in specimens with longer spacer duration (> 12 weeks) with specimens with shorter durations. Statistical analyses used the unpaired student Objectives
Methods
MicroRNAs (miRNAs ) are small non-coding RNAs
that regulate gene expression. We hypothesised that the functions
of certain miRNAs and changes to their patterns of expression may
be crucial in the pathogenesis of nonunion. Healing fractures and
atrophic nonunions produced by periosteal cauterisation were created
in the femora of 94 rats, with 1:1 group allocation. At post-fracture
days three, seven, ten, 14, 21 and 28, miRNAs were extracted from
the newly generated tissue at the fracture site. Microarray and
real-time polymerase chain reaction (PCR) analyses of day 14 samples
revealed that five miRNAs, miR-31a-3p, miR-31a-5p, miR-146a-5p,
miR-146b-5p and miR-223-3p, were highly upregulated in nonunion.
Real-time PCR analysis further revealed that, in nonunion, the expression
levels of all five of these miRNAs peaked on day 14 and declined
thereafter. Our results suggest that miR-31a-3p, miR-31a-5p, miR-146a-5p,
miR-146b-5p and miR-223-3p may play an important role in the development
of nonunion. These findings add to the understanding of the molecular mechanism
for nonunion formation and may lead to the development of novel
therapeutic strategies for its treatment. Cite this article:
Neurogenic heterotopic ossification (NHO) is
a disorder of aberrant bone formation affecting one in five patients sustaining
a spinal cord injury or traumatic brain injury. Ectopic bone forms
around joints in characteristic patterns, causing pain and limiting
movement especially around the hip and elbow. Clinical sequelae
of neurogenic heterotopic ossification include urinary tract infection,
pressure injuries, pneumonia and poor hygiene, making early diagnosis
and treatment clinically compelling. However, diagnosis remains
difficult with more investigation needed. Our pathophysiological
understanding stems from mechanisms of basic bone formation enhanced
by evidence of systemic influences from circulating humor factors
and perhaps neurological ones. This increasing understanding guides
our implementation of current prophylaxis and treatment including
the use of non-steroidal anti-inflammatory drugs, bisphosphonates,
radiation therapy and surgery and, importantly, should direct future, more
effective ones.
We present the results of 13 patients who suffered severe injuries to the lower leg. Five sustained a traumatic amputation and eight a Gustilo-Anderson type IIIC open fracture. All were treated with debridement, acute shortening and stabilisation of the fracture and vascular reconstruction. Further treatment involved restoration of tibial length by callus distraction through the distal or proximal metaphysis, which was commenced soon after the soft tissues had healed (n = 8) or delayed until union of the fracture (n = 5). All patients were male with a mean age of 28.4 years (17 to 44), and had sustained injury to the leg only. Chen grade II functional status was achieved in all patients. Although the number of patients treated with each strategy was limited, there was no obvious disadvantage in the early lengthening programme, which was completed more quickly.
This is a retrospective study of six children with ununited scaphoid fractures treated conservatively. Their mean age was 12.8 years (9.7 to 16.3). Five had no early treatment. Radiological signs of nonunion were found at a mean of 4.6 months (3 to 7) after injury. Treatment consisted of cast immobilisation until clinical and radiological union. The mean clinical and radiological follow-up was for 67 months (17 to 90). We assessed the symptoms, the range of movement of the wrist and the grip strength to calculate the Modified Mayo Wrist score. The fracture united in all patients after a mean period of immobilisation of 5.3 months (3 to 7). Five patients were pain free; one had mild pain. All returned to regular activities, and had a range of movement and grip strength within 25% of normal, resulting in an excellent Modified Mayo Wrist score. Prolonged treatment with cast immobilisation resulted in union of the fracture and an excellent Modified Wrist Score in all patients.
We describe a series of 20 patients with ununited fractures of the femoral neck following neglected trauma or failed primary internal fixation who were seen at a mean of 7.5 months (2 to 18) following injury. Open reduction and internal fixation of the fracture was performed in all patients, together with a myoperiosteal flap on the quadratus femoris muscle pedicle. Union occurred at a mean of 4.9 months (2 to 10) in all patients. The mean follow-up was for 70 months (14 to 144). There was no further progression in six of seven patients with pre-operative radiological evidence of osteonecrosis of the femoral head. One patient had delayed collapse and flattening of the femoral head ten years after union of the fracture, but remained asymptomatic. This study demonstrates the orthopaedic application of myoperiosteal grafting for inducing osteogenesis in a difficult clinical situation.