Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 8 - 8
1 Jan 2017
Goërtz Y Buil I Jochem I Sipers W Smid M Heyligers I Grimm B
Full Access

Falls and fall-related injuries can have devastating health consequences and form a growing economic burden for the healthcare system. To identify individuals at risk for preventive measures and therapies, fall risk assessment scores have been developed. However, they are costly in terms of time and effort and rely on the subjective interpretation of a skilled professional making them less suitable for frequent assessment or in a screening situation.

Small wearable sensors as activity monitor can objectively provide movement information during daily-life tasks. It is the aim of this study is to evaluate whether the activity parameters from wearable monitors correlate with fall risk scores and may predict conventional assessment scores.

Physical activity data were collected from nineteen home-dwelling frail elderly (n=19, female=10; age=81±5.6 years, GFI=5.4±1.9, MMSE=27.4±1.5) during waking hours of 4 consecutive days, wearing a wearable 9-axis activity monitor (56×40×15mm, 25g) on the lateral side of the right thigh. The signal was analysed using self-developed, previously validated algorithms (Matlab) producing the following parameters: time spent walking, step count, sit-stand-transfer counts, mean cadence (steps/min), count of stair uses and intensity counts >1.5G.

Conventional fall risk assessment was performed using the Tinetti sore (range: 0–28=best), a widely used tool directly determining the likelihood of falls and the Short Physical Performance Battery (SPPB, range: 0–12=best) which measures lower extremity performance as a validated proxy of fall risk. The anxiety to fall during activities of daily living was assessed using the self-reported Short Falls Efficacy Scale-International (FES-I, range: 7–28=worst).

Correlations between activity parameters and conventional scores were tested using Pearson's r.

The activity parameters (daily means) for the 19 participants were 70.8min (SD=28.7; min-max= 22.8–126.6) of walking, 4427 steps (SD=2344; min-max= 1391–8269) with a cadence 79.3 steps per minute (SD=17.1; min-max=52.8–103.9) and 33.3 sit-stand transfers (SD=9.7; min-max=8.8–48.0).

The average Tinetti score was 21.2 (SD=5.1; min-max=10.0–27.0), with SPPB scoring 7.8 (SD=2.4; min-max=3.0–12.0), and FES-I 4.6 (SD=5.1; min-max=7.0–23.0).

Strong (r≥0.6) and significant correlations existed between the walking cadence and the Tinetti (r=.60, p=<.01) and SPPB (r=.71, p=<.01) scores. No other correlations were found between the activity parameters and the Tinetti, SPPB and none with the psychological FES-I questionnaire.

Conventional fall risk scores and activity data are comparable to literature values and thus representative of home-dwelling frail elderly including a wide range covered for both dimensions.

No quantitative activity measure had a predictive value for fall risk assessment. Strongly correlated with Tinetti and SPPB, objectively measured cadence as a qualitative parameter seems a useful parameter for remotely identifying fall risk in frail elderly. The perceived anxiety to falls was not correlated to quantitative and qualitative activity parameters suggesting that this psychological aspect hardly affects activity.

Wearable activity monitors seem a valid tool to assess fall risk remotely and thus allow low cost, frequent and large group screening of frail elderly towards a health economically viable tool for a growing societal need. The predictive quality of activity monitored data may be increased by deriving additional qualitative measures from the activity data.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 2 - 2
1 Dec 2021
Sanderson W Foster R Edwards J Wilcox R Herbert A
Full Access

Abstract. Objectives. The patella tendon (PT) is commonly used as a graft material for anterior cruciate ligament reconstruction (ACLR). The function of the graft is to restore the mechanical behaviour of the knee joint. Therefore, it is essential that a robust methodology be developed for the mechanical testing of the PT, as well as for the tissue engineered grafts derived from this tissue. Our objectives were to (1) survey the literature, in order to define the state-of-the-art in mechanical testing of the PT, highlighting the most commonly used testing protocols, and (2) conduct validation studies using porcine PT to compare the mechanical measurements obtained using different methodological approaches. Methods. A PubMed search was performed using a boolean search term to identify publications consisting of PT tensile testing, and limited to records published in the past ten years (2010–2020). This returned a total of 143 publications. A meta-analysis was undertaken to quantify the frequency of commonly used protocol variations (pre-conditioning regime, strain rates, maximum strain, etc.). Validation studies were performed on porcine PT (n=4) using Instron tensile testing apparatus to examine the effect of preconditioning on low-strain (toe-region) mechanical properties. Results. Ramp-to-failure testing was found to be most commonly performed (included in over 90 % of publications), followed by stress relaxation and cyclic testing (∼25 %). Preconditioning was most commonly cyclic (27 %), involving 10–100 cycles. Validation studies show the number of cycles and duration of preconditioning, has no significant effect on toe region transition strain, transition stress, or sensitivity to increasing strain. Conclusions. There is a lack of standardisation in the mechanical testing of PT, which could have implications for the comparison of studies conducted using different protocols. However, variations in preconditioning regime have no effect on low-strain mechanical properties


Bone & Joint Research
Vol. 6, Issue 8 | Pages 514 - 521
1 Aug 2017
Mannering N Young T Spelman T Choong PF

Objectives

Whilst gait speed is variable between healthy and injured adults, the extent to which speed alone alters the 3D in vivo knee kinematics has not been fully described. The purpose of this prospective study was to understand better the spatiotemporal and 3D knee kinematic changes induced by slow compared with normal self-selected walking speeds within young healthy adults.

Methods

A total of 26 men and 25 women (18 to 35 years old) participated in this study. Participants walked on a treadmill with the KneeKG system at a slow imposed speed (2 km/hr) for three trials, then at a self-selected comfortable walking speed for another three trials. Paired t-tests, Wilcoxon signed-rank tests, Mann-Whitney U tests and Spearman’s rank correlation coefficients were conducted using Stata/IC 14 to compare kinematics of slow versus self-selected walking speed.