Aims. There are concerns regarding nail/medullary canal mismatch and initial stability after cephalomedullary nailing in
PURPOSE: The treatment of pertrochanteric fractures is constantly evolving and surgical issues remain controversial. Although the use of a sliding hip screw is considered to be the treatment of choice by many surgeons, we believe that intramedullary nailing could be a viable treatment option for
Controversy exists whether to treat
Controversy exists whether to treat
Background. Cephalomedullary nails are widely used for fixation of
Introduction. Cephalomedullary nailing (CMN) is commonly used for
Background. A large proportion of the expense incurred due to hip fractures arises due to secondary factors such as duration of hospital stay and additional theatre time due to surgical complications. Studies have shown that the use of intramedullary (IM) nail fixation presents a statistically higher risk of re-fracture than plating, which has been attributed to the stress riser at the end of the nail. It is not clear, however, if this situation also applies to unstable fractures, for which plating has a higher fixation failure rate. Moreover, biomechanical studies to date have not considered newer designs of IM nails which have been specifically designed to better distribute weight-bearing loads. This aim of this experimental study was to evaluate the re-fracture risk produced by a newer type of nailing system compared to an equivalent plate. Methods. Experimental testing was conducted using fourth generation Sawbones composite femurs and X-Bolt IM hip nail (n=4) and fracture plate (n=4) implants. An
Hip fractures constitute the most debilitating complication of osteoporosis with a steadily increasing incidence in an aging population. Intramedullary nailing of osteoporotic proximal femoral fractures can be challenging because of poor implant anchorage in the femoral head. Recently, cement augmentation of PFNA blades with Polymethylmethycrylate (PMMA) has shown promising results by enhancing the cutout resistance in proximal femoral fractures. The aim of this biomechanical study was to assess the impact of cement augmentation on the fixation strength of TFNA blades and screws within the femoral head, and compare its effect with head elements placed in a center or antero–posterior off–center positions. Eight groups were formed out of 96 polyurethane foam specimens with low density, simulating isolated femoral heads with severe osteoporotic bone. The specimens in each group were implanted with either non–augmented or PMMA–augmented TFNA blades or screws in a center or antero–posterior off–center position, 7 mm anterior or 7 mm posterior. They were mechanically tested in a setup simulating an
Summary. Biomechanically, a 2° screw deviation from the nominal axis in the PFLCP leads to significantly earlier implant failure. Screw deviation relies on a technical error on insertion, but in our opinion cannot be controlled intraoperatively with the existing instrumentation devices. Background. Several cases of clinical failure have been reported for the Proximal Femoral Locking Compression Plate (PFLCP). The current study was designed to investigate the failure mode and to explore biomechanically the underlying mechanism. Specifically, the study sought to determine if the observed failure was due to technical error on insertion or due to implant design. Methods. To exclude patient and fracture type related factors, an abstract foam block model simulating an
Introduction. Internal fixation of pertrochanteric fractures is evolving as newer implants are being developed. Proximal Femoral Nail Antirotation (PFNA) is a recently introduced implant from AO/ASIF designed to compact the cancellous bone and may be particularly useful in unstable and osteoporotic hip fractures. This study is a single and independent centre experience of this implant used in management of acute hip fractures. Methods. 68 patients involving 68 PFNA nailing procedures done over a period of 2 years (2007–09) were included in the study. Average follow-up period of patients was 1 year. AO classification for trochanteric fractures was used to classify all the fractures. Radiological parameters including tip-apex distance and neck shaft angle measurement were assessed. Results. Average age of patients included in the study was 80 years. 18 patients died during the follow up period due to non-procedure related causes. Average tip-apex distance was 12.7 mm and radiological fracture union time was 5 months. Revision of short to a long PFNA was needed for periprosthetic fracture of shaft of femur in two patients. Two patients needed a complex total hip replacement eventually and further two patients had removal of the implant due to PFNA blade penetration through the femoral head. Discussion. PFNA is a technically demanding procedure and has a learning curve. Our experience shows that it is a useful implant in
The paradoxical migration of the femoral neck element (FNE) superomedially against gravity, with respect to the intramedullary component of the cephalomedullary device, is a poorly understood phenomenon increasingly seen in the management of pertrochanteric hip fractures with the intramedullary nail. The aim of this study was to investigate the role of bidirectional loading on the medial migration phenomenon, based on unique wear patterns seen on scanning electron microscopy of retrieved implants suggestive of FNE toggling. A total of 18 synthetic femurs (Sawbones, Vashon Island, Washington) with comminuted pertrochanteric fractures were divided into three groups (n = 6 per group). Fracture fixation was performed using the Proximal Femoral Nail Antirotation (PFNA) implant (Synthes, Oberdorf, Switzerland; n = 6). Group 1 was subjected to unidirectional compression loading (600 N), with an elastomer (70A durometer) replacing loose fracture fragments to simulate surrounding soft-tissue tensioning. Group 2 was subjected to bidirectional loading (600 N compression loading, 120 N tensile loading), also with the elastomer replacing loose fracture fragments. Group 3 was subjected to bidirectional loading (600 N compression loading, 120 N tensile loading) without the elastomer. All constructs were tested at 2 Hz for 5000 cycles or until cut-out occurred. The medial migration distance (MMD) was recorded at the end of the testing cycles.Objectives
Methods
The Sliding Hip Screw (SHS) is commonly used to treat trochanteric hip fractures. Fixation failure is a devastating complication requiring complex revision surgery. One mode of fixation failure is lag screw cut-out which is greatest in unstable fracture patterns and when the tip-apex distance of the lag screw is > 25 mm. The X-Bolt Dynamic Hip Plating System (X-Bolt Orthopaedics, Dublin, Ireland) is a new device which aims to reduce this risk of cut-out. However, some surgeons have reported difficulty minimising the tip-apex distance with subsequent concerns that this may lead to an increased risk of cut-out. We measured the tip-apex distance from the intra-operative radiographs of 93 unstable trochanteric hip fractures enrolled in a randomised controlled trial (Warwick Hip Trauma Evaluation, WHiTE One trial). Participants were treated with either the sliding hip screw or the X-Bolt dynamic hip plating system. We also recorded the incidence of cut-out in both groups, at a median follow-up time of 17 months.Objectives
Patients and Methods
Despite advances in the prevention and treatment of osteoporotic fractures, their prevalence continues to increase. Their operative treatment remains a challenge for the surgeon, often with unpredictable outcomes. This review highlights the current aspects of management of these fractures and focuses on advances in implant design and surgical technique.