Juvenile bone cysts in children and adolescents are often discovered incidentally or in connection with a pathologic fracture. Although the diagnostic procedure in this type of lesion affecting the skeleton has become uniform, the treatment varies according to the principles established at different clinics. The aim of our study was to compare two Methods: applied in the treatment of juvenile bone cysts, i.e. the established method of a series of Methylprednisolone injections and a new mini-invasive method using a
The aim of this study is to present and discuss some preliminary applications of
Bone growth into cementless prosthetic components is compromised by osteoporosis, by any gap between the implant and the bone, by micromotion, and after the revision of failed prostheses. Recombinant human transforming growth factor-β1 (rhTGF-β1) has recently been shown to be a potent stimulator of bone healing and bone formation in various models in vivo. We have investigated the potential of rhTGF-β1, adsorbed on to weight-loaded
Purpose: Autologous bone grafting is considered the gold standard for multiple orthopaedic indications, including non-union of fractures and other bone defects. Previously autograft was most commonly harvested from the iliac crest, with an estimated complication rate of greater than 10%. New technology, the RIA system, allows harvest of graft material from the medullary canal of the femur. The purpose of this study is to examine the osteo-inductive properties of this human femoral bone graft obtained using the RIA system and the RIA filtrate combined with chronOS (Tricalcium Phosphate). This study will examine whether these materials will induce bone growth when implanted in a rat sub-muscular pouch model. Method: Three samples were collected from each human subject. These included:. femoral bone graft obtained using the RIA {n=10}. chronOS washed with RIA filtrate {n=10}and. a mixture of these two materials {n=10}. chronOS (alone) was used as control {n=10}. These materials were implanted into a sub-muscular pouch in athymic rats (to eliminate rejection of the xenograft). Rat serum levels of BMP-2, VEG-F, TGF-β and IL-10 were obtained at days 7, 14, 21 and 28. Rats were sacrificed at day 28 and radiographic and histologic examinations and histomorphometric analyses were performed. Results: Overall, there were no significant differences in BMP-2, VEG-F, TGF-β and IL-10 levels either between groups or between time points. Average serum values for BMP-2 decreased over time for all groups. Histologically and radiographically, all four materials induced new bone production. chronOS alone produced the greatest volume of new bone while RIA reamings alone produced the least. Histological analysis demonstrated formation of normal bone. Conclusion: The RIA system allowed for harvest of femoral bone graft. This graft induced bone formation and increased osteogenic protein levels when implanted in the rat model. The RIA filtrate, when combined with
Among the wide variety of bone substitutes presently available, pure β-tricalcium phosphate ceramics have become available (Biosorb®; Aesculap, Tuttlingen). During the first 12 months of a prospective clinical trial, Biosorb® products were implanted in 21 patients. The ceramics were used in a variety of clinical settings, ranging from pelvic osteotomies in children (n=9), to filling of bone cysts or osseous defects (n=4), to dorsal spondylodesis (n=6), as well as for the grafting of pseudarthroses (n=2). Average follow-up period was 13 (6–18) months. The β-TCP granules, when used as part of a composite graft in combination with autologous bone, were completely resorbed after an average period of 14 weeks, while the cubes required 12 to 15 months. The more massive wedges have shown only a decrease in size and radio density. Due to the ability of the cubes and wedges to bear loads of up to 30 MPa, they were successfully implanted during pelvic osteotomies to augment or completely replace the bicortical grafts. Complications or foreign body reactions were not noted. The osseointegration was found to be favorable for all forms. In light of the problems associated with autologous and allogeneic grafts, the use of synthetic bone substitutes will continue to increase. The combination of complete resorption, lack of risk of infection, and load sharing ability make the β-tricalcium phosphate implants a valuable addition to the spectrum of bone replacement products presently available. Their use in pediatric orthopedics could help avoid donor site morbidity including contour changes or growth disturbances, while providing a more stable graft. During the first phase of a prospective clinical trial, we have come to the conclusion, that the β-tricalcium phosphate ceramics represent a real alternative to other bone substitutes.
Bioresorbable orthopaedic devices with calcium phosphate (CaP) fillers are commercially available on the assumption that increased calcium (Ca) locally drives new bone formation, but the clinical benefits are unknown. Electron beam (EB) irradiation of polymer devices has been shown to enhance the release of Ca. The aims of this study were to: 1) establish the biological safety of EB surface-modified bioresorbable devices; 2) test the release kinetics of CaP from a polymer device; and 3) establish any subsequent beneficial effects on bone repair ActivaScrew Interference (Bioretec Ltd, Tampere, Finland) and poly(L-lactide-co-glycolide) (PLGA) orthopaedic screws containing 10 wt% β-tricalcium phosphate (β-TCP) underwent EB treatment. Objectives
Methods
The continual cycle of bone formation and resorption
is carried out by osteoblasts, osteocytes, and osteoclasts under
the direction of the bone-signaling pathway. In certain situations
the host cycle of bone repair is insufficient and requires the assistance
of bone grafts and their substitutes. The fundamental properties
of a bone graft are osteoconduction, osteoinduction, osteogenesis,
and structural support. Options for bone grafting include autogenous
and allograft bone and the various isolated or combined substitutes
of calcium sulphate, calcium
A spine compression fracture is a very common form of fracture in elderly with osteoporosis. Injection of polymethyl methacrylate (PMMA) to fracture sites is a minimally invasive surgical treatment, but PMMA has considerable clinical risks. We develop a novel type thermoplastic injectable bone substitute contains the proprietary composites of synthetic ceramic bone substitute and absorbable thermoplastic polymer. We used thermoplastic biocompatible polymers Polycaproactone (PCL) to encapsulate calcium-based bone substitutes hydroxyapatite (Ca10(PO4)6(OH)2, HA) and
Introduction. The incidences of fragility fractures, often because of osteoporosis, are increasing. Research has moved towards bioresorbable scaffolds that provide temporary mechanical stability and promote osteogenesis. This research aims to fabricate a 3D printed composite Poly (l-lactic-co-glycolic acid)-strontium doped
We have developed an animal model to examine the formation of heterotopic ossification using standardised muscular damage and implantation of a beta-tricalcium phosphate block into a hip capsulotomy wound in Wistar rats. The aim was to investigate how cells originating from drilled femoral canals and damaged muscles influence the formation of heterotopic bone. The femoral canal was either drilled or left untouched and a
Abstract. Background. The aim of the present experimental study was to analyse vancomycin elution kinetics of nine bone fillers used in orthopaedic and trauma surgery over 42 consecutive days. Methods. Two allograft bone chips (carriers 1 and 2), a calcium-sulfate matrix (carrier 3), a hydroxyapatite/calcium-sulphate composite (carrier 4), four bone cements (carriers 5-8) and a pure
Favoring osseointegration and avoiding bacterial contamination are the key challenges in the design of implantable devices for orthopedic applications. To meet these goals, a promising route is to tune the biointerface of the devices, that can regulate interactions with the host cells and bacteria, by using nanostructured antibacterial and bioactive coatings. Indeed, the selection of adequate metal-based coatings permits to discourage infection while avoiding the development of bacterial resistance and nanostructuring permits to tune the release of the antimicrobial compounds, allowing high efficacy and decreasing possible cytotoxic effects. In addition, metal-doped calcium phosphates-based nanostructured coatings permit to tune both composition and morphology of the biointerfaces, allowing to regulate host cells and bacteria response. To tune the biointerfaces of implantable devices, nanostructured coatings can be used, but their use is challenging when the substrate is heat-sensitive and/or porous. Here, we propose the use of Ionized Jet Deposition (IJD) to deposit metallic and ion-doped calcium phosphates materials onto different polymeric substrates, without heating and damaging the substrate morphology. 3D printed scaffolds in polylactic acid (PLA) and polyurethane (PU), and electrospun matrices in polycaprolactone (PCL) and PLA were used as substrates. Biogenic apatite (HA), ion doped (zinc, copper and iron)
The role of bone-graft extenders in impaction revision surgery is becoming increasingly important.
Over the last decades, biodegradable metals emerged as promising materials for various biomedical implant applications, aiming to reduce the use of permanent metallic implants and, therefore, to avoid additional surgeries for implant removal. However, among the important issue to be solved is their fast corrosion - too high to match the healing rate of the bone tissue. The most effective way to improve this characteristic is to coat biodegradable metals with substituted calcium
A literature review of bone graft substitutes for spinal fusion was undertaken from peer reviewed journals to form a basis for guidelines on their clinical use. A PubMed search of peer reviewed journals between Jan 1960 and Dec 2009 for clinical trials of bone graft substitutes in spinal fusion was performed. Emphasis was placed on RCTs. Small and duplicated RCTs were excluded. If no RCTs were available the next best clinical evidence was assessed. Data were extracted for fusion rates and complications. Of 929 potential spinal fusion studies, 7 RCTs met the inclusion criteria for BMP-2, 3 for BMP-7, 2 for
The aim of this study was to examine the results of medial opening wedge high tibial osteotomies in which TRISOITE (hydroxyapatite
For successful long-term result of non-cemented total hip arthroplasty (THA), direct biological bond between bone and implant through bony ingrowth into the implant is essential. To facilitate strong bond between bone and implant, hydroxyapatite (HA) or hydroxyapatite and
Introduction and Objective. Management of bone loss associated with bone contamination or infection represents a double biological and clinical challenge frequent in traumatology. The advent of new biomaterials can allow a different approach in the treatment of bone gap. The purpose of this study was to evaluate the prophylactic and therapeutic effectiveness of addition of a new absorbable bone substitute (BS) eluting different antibiotics in reconstruction of bone defects after infections and fractures with soft tissue damage. Materials and Methods. We conducted a review of patients with contaminated or infected bone defects treated using a new biomaterial, a porous composite of collagen matrices and Beta
Impacted morsellised allografts have been used successfully to address the problem of poor bone stock in revision surgery. However, there are concerns about the transmission of pathogens, the high cost and the shortage of supply of donor bone. Bone-graft extenders, such as
The treatment of chronic osteomyelitis often
includes surgical debridement and filling the resultant void with antibiotic-loaded
polymethylmethacrylate cement, bone grafts or bone substitutes.
Recently, the use of bioactive glass to treat bone defects in infections
has been reported in a limited series of patients. However, no direct comparison
between this biomaterial and antibiotic-loaded bone substitute has
been performed. . In this retrospective study, we compared the safety and efficacy
of surgical debridement and local application of the bioactive glass
S53P4 in a series of 27 patients affected by chronic osteomyelitis
of the long bones (Group A) with two other series, treated respectively
with an antibiotic-loaded hydroxyapatite and calcium sulphate compound
(Group B; n = 27) or a mixture of