Advertisement for orthosearch.org.uk
Results 1 - 20 of 87
Results per page:
Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_II | Pages 109 - 109
1 May 2011
Planka L Ondrus S Straka M Stary D Gal P
Full Access

Juvenile bone cysts in children and adolescents are often discovered incidentally or in connection with a pathologic fracture. Although the diagnostic procedure in this type of lesion affecting the skeleton has become uniform, the treatment varies according to the principles established at different clinics. The aim of our study was to compare two Methods: applied in the treatment of juvenile bone cysts, i.e. the established method of a series of Methylprednisolone injections and a new mini-invasive method using a Tricalcium phosphate. In both groups of patients, we performed an evaluation of the number of required surgeries, general anaesthesias and subsequent hospitalizations (including the length of hospitalization), the treatment results and the interval between surgery and complete cyst healing using Neer’s evaluation criteria. The group of patients treated with Methylprednisolone consisted of 24 patients and the group of patients treated with Tricalcium phosphate comprised 20 patients. The outcome of the statistical analysis proves that in patients treated with Tricalcium phosphate significantly better results were obtained compared to patients where Methylprednisolone was applied. A subsequent surgery (additional application) was necessary only in two Tricalcium phosphate patients (10%) compared to nineteen Methylprednisolone patients (79%). The average length of hospitalization was 4 days in Tricalcium phosphate patients and 3.5 days in Methylprednisolone patients. Excellent and good results according to the Neer classification were documented in eighteen Tricalcium phosphate patients (19%) and in twelve Methylprednisolone patients (50%). The treatment of juvenile bone cysts with a biocompatible resorbable synthetic filler Tricalcium phosphate helps reduce the number of surgeries necessary for complete cyst healing and produces better results in terms of Neer’s evaluation criteria of bone cyst treatment results compared to the application of Methylprednisolone into the cyst. This work was supported by the Internal Grant Agency of the Ministry of Health of the Czech Republic (NS9860-3/2008)


Orthopaedic Proceedings
Vol. 87-B, Issue SUPP_II | Pages 194 - 194
1 Apr 2005
Origo C Portinaro N
Full Access

The aim of this study is to present and discuss some preliminary applications of tricalcium phosphate “Norian” in children and adolescents with different skeletal disorders. From 1997 to 2002 Norian was used as a biological bone substitute in 10 patients (six girls and four boys; mean age 11 years). The indications were four calcaneal cysts, one phalangeal enchondroma of the hand, one chondromyxoid fibroma of the tibia, one eosino-philic granuloma of the femur and one aneurysmal cyst of the tibia. Norian was also used as a bone graft in two Dega’s pelvic osteotomies. Follow-up was performed radiologically and clinically. There was one deep infection in a calcaneal cyst which completely healed after curettage and antibiotic therapy and one soft tissue transitory painful reaction to Norian. All cases healed without complication and there was progressive osteointegration at radiological follow-up. This preliminary study, even with different pathologies and a short follow-up, shows good biocompatibility of the material in the short- and mid-term, with satisfactory clinical results. Mechanical stability under compressive and shearing loads was detected when load bearing was allowed after 30 days in all cases. Norian tricalcic phosphate is a good and strong bone substitute when a large autologus graft is needed as seen with distal fractures of the radius, tibial plateau and Dega’s pelvic osteotomy


The Journal of Bone & Joint Surgery British Volume
Vol. 78-B, Issue 3 | Pages 377 - 382
1 May 1996
Lind M Overgaard S Ongpipattanakul B Nguyen T Bünger C Søballe K

Bone growth into cementless prosthetic components is compromised by osteoporosis, by any gap between the implant and the bone, by micromotion, and after the revision of failed prostheses. Recombinant human transforming growth factor-β1 (rhTGF-β1) has recently been shown to be a potent stimulator of bone healing and bone formation in various models in vivo. We have investigated the potential of rhTGF-β1, adsorbed on to weight-loaded tricalcium phosphate (TCP) coated implants, to enhance bone ongrowth and mechanical fixation. We inserted cylindrical grit-blasted titanium alloy implants bilaterally into the weight-bearing part of the medial femoral condyles of ten skeletally mature dogs. The implants were mounted on special devices which ensured stable weight-loading during each gait cycle. All implants were initially surrounded by a 0.75 mm gap and were coated with TCP ceramic. Each animal received two implants, one with 0.3 μg rhTGF-β1 adsorbed on the ceramic surface and the other without growth factor. Histological analysis showed that bone ongrowth was significantly increased from 22 ± 5.6% bone-implant contact in the control group to 36 ± 2.9% in the rhTGF-β stimulated group, an increase of 59%. The volume of bone in the gap was increased by 16% in rhTGF-β1-stimulated TCP-coated implants, but this difference was not significant. Mechanical push-out tests showed no difference in fixation of the implant between the two groups. Our study suggests that rhTGF-β1 adsorbed on TCP-ceramic-coated implants can enhance bone ongrowth


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_I | Pages 17 - 17
1 Mar 2010
Stewart RL Stannard J Volgas D Duke J Chaudry I
Full Access

Purpose: Autologous bone grafting is considered the gold standard for multiple orthopaedic indications, including non-union of fractures and other bone defects. Previously autograft was most commonly harvested from the iliac crest, with an estimated complication rate of greater than 10%. New technology, the RIA system, allows harvest of graft material from the medullary canal of the femur. The purpose of this study is to examine the osteo-inductive properties of this human femoral bone graft obtained using the RIA system and the RIA filtrate combined with chronOS (Tricalcium Phosphate). This study will examine whether these materials will induce bone growth when implanted in a rat sub-muscular pouch model. Method: Three samples were collected from each human subject. These included:. femoral bone graft obtained using the RIA {n=10}. chronOS washed with RIA filtrate {n=10}and. a mixture of these two materials {n=10}. chronOS (alone) was used as control {n=10}. These materials were implanted into a sub-muscular pouch in athymic rats (to eliminate rejection of the xenograft). Rat serum levels of BMP-2, VEG-F, TGF-β and IL-10 were obtained at days 7, 14, 21 and 28. Rats were sacrificed at day 28 and radiographic and histologic examinations and histomorphometric analyses were performed. Results: Overall, there were no significant differences in BMP-2, VEG-F, TGF-β and IL-10 levels either between groups or between time points. Average serum values for BMP-2 decreased over time for all groups. Histologically and radiographically, all four materials induced new bone production. chronOS alone produced the greatest volume of new bone while RIA reamings alone produced the least. Histological analysis demonstrated formation of normal bone. Conclusion: The RIA system allowed for harvest of femoral bone graft. This graft induced bone formation and increased osteogenic protein levels when implanted in the rat model. The RIA filtrate, when combined with Tricalcium Phosphate, is equally osteoinductive. Combining reamings with filtrate material may allow large volumes of graft to be produced using this system. This new technology may allow the collection of large volume, osteoinductive grafts without the complications previously described for iliac crest bone graft harvesting


Orthopaedic Proceedings
Vol. 84-B, Issue SUPP_I | Pages 20 - 20
1 Mar 2002
Siebert C Wirtz D Gottschalk D Niedhart C
Full Access

Among the wide variety of bone substitutes presently available, pure β-tricalcium phosphate ceramics have become available (Biosorb®; Aesculap, Tuttlingen). During the first 12 months of a prospective clinical trial, Biosorb® products were implanted in 21 patients. The ceramics were used in a variety of clinical settings, ranging from pelvic osteotomies in children (n=9), to filling of bone cysts or osseous defects (n=4), to dorsal spondylodesis (n=6), as well as for the grafting of pseudarthroses (n=2). Average follow-up period was 13 (6–18) months.

The β-TCP granules, when used as part of a composite graft in combination with autologous bone, were completely resorbed after an average period of 14 weeks, while the cubes required 12 to 15 months. The more massive wedges have shown only a decrease in size and radio density. Due to the ability of the cubes and wedges to bear loads of up to 30 MPa, they were successfully implanted during pelvic osteotomies to augment or completely replace the bicortical grafts. Complications or foreign body reactions were not noted. The osseointegration was found to be favorable for all forms.

In light of the problems associated with autologous and allogeneic grafts, the use of synthetic bone substitutes will continue to increase. The combination of complete resorption, lack of risk of infection, and load sharing ability make the β-tricalcium phosphate implants a valuable addition to the spectrum of bone replacement products presently available. Their use in pediatric orthopedics could help avoid donor site morbidity including contour changes or growth disturbances, while providing a more stable graft. During the first phase of a prospective clinical trial, we have come to the conclusion, that the β-tricalcium phosphate ceramics represent a real alternative to other bone substitutes.


Objectives

Bioresorbable orthopaedic devices with calcium phosphate (CaP) fillers are commercially available on the assumption that increased calcium (Ca) locally drives new bone formation, but the clinical benefits are unknown. Electron beam (EB) irradiation of polymer devices has been shown to enhance the release of Ca. The aims of this study were to: 1) establish the biological safety of EB surface-modified bioresorbable devices; 2) test the release kinetics of CaP from a polymer device; and 3) establish any subsequent beneficial effects on bone repair in vivo.

Methods

ActivaScrew Interference (Bioretec Ltd, Tampere, Finland) and poly(L-lactide-co-glycolide) (PLGA) orthopaedic screws containing 10 wt% β-tricalcium phosphate (β-TCP) underwent EB treatment. In vitro degradation over 36 weeks was investigated by recording mass loss, pH change, and Ca release. Implant performance was investigated in vivo over 36 weeks using a lapine femoral condyle model. Bone growth and osteoclast activity were assessed by histology and enzyme histochemistry.


The Bone & Joint Journal
Vol. 98-B, Issue 1_Supple_A | Pages 6 - 9
1 Jan 2016
Fillingham Y Jacobs J

The continual cycle of bone formation and resorption is carried out by osteoblasts, osteocytes, and osteoclasts under the direction of the bone-signaling pathway. In certain situations the host cycle of bone repair is insufficient and requires the assistance of bone grafts and their substitutes. The fundamental properties of a bone graft are osteoconduction, osteoinduction, osteogenesis, and structural support. Options for bone grafting include autogenous and allograft bone and the various isolated or combined substitutes of calcium sulphate, calcium phosphate, tricalcium phosphate, and coralline hydroxyapatite. Not all bone grafts will have the same properties. As a result, understanding the requirements of the clinical situation and specific properties of the various types of bone grafts is necessary to identify the ideal graft. We present a review of the bone repair process and properties of bone grafts and their substitutes to help guide the clinician in the decision making process. Cite this article: Bone Joint J 2016;98-B(1 Suppl A):6–9


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 72 - 72
17 Apr 2023
Hsieh Y Hsieh M Shu Y Lee H
Full Access

A spine compression fracture is a very common form of fracture in elderly with osteoporosis. Injection of polymethyl methacrylate (PMMA) to fracture sites is a minimally invasive surgical treatment, but PMMA has considerable clinical risks. We develop a novel type thermoplastic injectable bone substitute contains the proprietary composites of synthetic ceramic bone substitute and absorbable thermoplastic polymer. We used thermoplastic biocompatible polymers Polycaproactone (PCL) to encapsulate calcium-based bone substitutes hydroxyapatite (Ca10(PO4)6(OH)2, HA) and tricalcium phosphate (TCP) to form a biodegradable injectable bone composite material. The space occupation ration PCL:HA/TCP is 1:9. After heating process, it can be injected to fracture site by specific instrument and then self-setting to immediate reinforce the vertebral body. The thermoplastic injection bone substitute can obtain good injection properties after being heated by a heater at 90˚C for three minutes, and has good anti-washout property when injected into normal saline at 37˚C. After three minutes, solidification is achieved. Mechanical properties were assessed using the material compression test system and the mechanical support close to the vertebral spongy bone. In vitro cytotoxicity MTT assay (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) was performed and no cell cytotoxicity was observed. In vivo study with three New Zealand rabbits was performed, well bone growth into bone substitute was observed and can maintain good mechanical support after three months implantation. The novel type thermoplastic injection bone substitute can achieve (a) adequate injectability and viscosity without the risk of cement leakage; (b) adequate mechanical strength for immediate reinforcement and prevent adjacent fracture; (c) adequate porosity for new bone ingrowth; (e) biodegradability. It could be developed as a new option for treating vertebral compression fractures


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 26 - 26
14 Nov 2024
Tiplady S Heinemann C Kruppke B Manda K Clarke S Lennon A Larrañeta E Buchanan F
Full Access

Introduction. The incidences of fragility fractures, often because of osteoporosis, are increasing. Research has moved towards bioresorbable scaffolds that provide temporary mechanical stability and promote osteogenesis. This research aims to fabricate a 3D printed composite Poly (l-lactic-co-glycolic acid)-strontium doped tricalcium phosphate (PLGA-SrTCP) scaffold and evaluate in an in vitro co culture study containing osteoporotic donor cells. Method. PLGA, PLGA TCP, and PLGA SrTCP scaffolds were produced using Fused Filament Fabrication (FFF). A four-group 35-day cell culture study was carried out using human bone marrow derived mesenchymal stem cells (hMSCs) from osteoporotic and control donors (monoculture) and hMSCs & human monocytes (hMCs) (Co culture). Outcome measures were biochemical assays, PCR, and cell imaging. Cells were cultured on scaffolds that had been pre-degraded for six weeks at 47°C prior to drying and gamma sterilisation. Result. 3D printed scaffolds were successfully produced by FFF. All groups in the study supported cell attachment onto the scaffolds, producing extracellular matrices as well as evidence of osteoclast cell structures. Osteoporotic cells increased CTSK activity and CAII activity and decreased ALP activity compared to controls. In control cultures, the addition of bTCP and bTCP/Sr to the PLGA reduced TRAP5b, CAII and ALP activity compared to PLGA alone. The addition of Sr did not show any differences between donors. Conclusion. This study details suitability of 3D printed polymer scaffolds for use in bone tissue applications. Both composite and pure polymer scaffolds promote osteogenesis in vitro. The introduction of ceramic filler and ion doping does not beneficially effect osteogenic potential and can reduce its ability compared to pure polymer. This study suggests the behaviour of control and osteoporotic cells are different and that osteoporotic cells are more prone to bone resorption. Therefore, it is important to design bone scaffolds that are specific to the patient as well as to the region of fracture


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 2 | Pages 298 - 303
1 Feb 2010
Toom A Suutre S Märtson A Haviko T Selstam G Arend A

We have developed an animal model to examine the formation of heterotopic ossification using standardised muscular damage and implantation of a beta-tricalcium phosphate block into a hip capsulotomy wound in Wistar rats. The aim was to investigate how cells originating from drilled femoral canals and damaged muscles influence the formation of heterotopic bone. The femoral canal was either drilled or left untouched and a tricalcium phosphate block, immersed either in saline or a rhBMP-2 solution, was implanted. These implants were removed at three and 21 days after the operation and examined histologically, histomorphometrically and immunohistochemically. Bone formation was seen in all implants in rhBMP-2-immersed, whereas in those immersed in saline the process was minimal, irrespective of drilling of the femoral canals. Bone mineralisation was somewhat greater in the absence of drilling with a mean mineralised volume to mean total volume of 18.2% (. sd. 4.5) versus 12.7% (. sd. 2.9, p < 0.019), respectively. Our findings suggest that osteoinductive signalling is an early event in the formation of ectopic bone. If applicable to man the results indicate that careful tissue handling is more important than the prevention of the dissemination of bone cells in order to avoid heterotopic ossification


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_19 | Pages 87 - 87
22 Nov 2024
Glehr M Smolle M Murtezai H Amerstorfer F Hörlesberger N Leitner L Klim S Hauer G Leithner A
Full Access

Abstract. Background. The aim of the present experimental study was to analyse vancomycin elution kinetics of nine bone fillers used in orthopaedic and trauma surgery over 42 consecutive days. Methods. Two allograft bone chips (carriers 1 and 2), a calcium-sulfate matrix (carrier 3), a hydroxyapatite/calcium-sulphate composite (carrier 4), four bone cements (carriers 5-8) and a pure tricalcium phosphate matrix (carrier 9), either already contained vancomycin, or were mixed with it following manufacturer's recommendations. Over 42 days, half of elution medium was substituted by the same amount of PBS at 9 distinct time points. Vancomycin concentration in obtained samples were measured with a kinetic microparticle immunoassay, and masses consecutively calculated. To enhance comparability between carriers analysed, vancomycin mass released related to overall mass within each probe was determined. Notably, elution kinetics of carriers 1 to 4 have been published previously. Results. All carriers initially released high vancomycin masses, followed by constant reduction later into the experiment. Mean initial vancomycin masses released after 4 hours were highest for carriers 1 (337.7 ± 76.2 mg), 9 (68.4 ± 4.9 mg), and 2 (49.0 ± 54.6 mg). From prefinal (35 days) to last measurement (42 days) carriers 2 (8.6 ± 4.8 mg), 1 (2.4 ± 1.0 mg), and 5 (0.1 ± 0.1 mg) had released highest vancomycin masses. Notably, all five bone cements tested only released a small percental amount of their total mass up to the last measurement (42 days; 2.1% – 9.3%), whilst allografts and resorbable synthetic bone fillers discarded high percental values (22.5% – 79.2%). Conclusions. Elution kinetics differ between 9 antibiotic-loaded bone fillers, with high vancomycin masses released by allografts and resorbable bone fillers over time. Transferred to clinical practice, these may be favoured over bone cements in case prolonged and high antibiotic release is warranted rather than mechanical stability


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_14 | Pages 21 - 21
1 Dec 2022
Montesissa M Farè S Draghi L Rau J Gualandi C Focarete M Boi M Baldini N Graziani G
Full Access

Favoring osseointegration and avoiding bacterial contamination are the key challenges in the design of implantable devices for orthopedic applications. To meet these goals, a promising route is to tune the biointerface of the devices, that can regulate interactions with the host cells and bacteria, by using nanostructured antibacterial and bioactive coatings. Indeed, the selection of adequate metal-based coatings permits to discourage infection while avoiding the development of bacterial resistance and nanostructuring permits to tune the release of the antimicrobial compounds, allowing high efficacy and decreasing possible cytotoxic effects. In addition, metal-doped calcium phosphates-based nanostructured coatings permit to tune both composition and morphology of the biointerfaces, allowing to regulate host cells and bacteria response. To tune the biointerfaces of implantable devices, nanostructured coatings can be used, but their use is challenging when the substrate is heat-sensitive and/or porous. Here, we propose the use of Ionized Jet Deposition (IJD) to deposit metallic and ion-doped calcium phosphates materials onto different polymeric substrates, without heating and damaging the substrate morphology. 3D printed scaffolds in polylactic acid (PLA) and polyurethane (PU), and electrospun matrices in polycaprolactone (PCL) and PLA were used as substrates. Biogenic apatite (HA), ion doped (zinc, copper and iron) tricalcium phosphate (TCP) and silver (Ag) coatings were obtained on porous and custom-made polymeric substrates. Chemical analyses confirmed that coatings composition matches that of the target materials, both in terms of main phase (HA or TCP) and ion doping (presence of Cu, Zn or Fe ion). Deposition parameters, and especially its duration time, influence the coating features (morphology and thickness) and substrate damage. Indeed, SEM/EDS observations show the presence of nanostructured agglomerates on substrates surface. The dimensions of the aggregates and the thickness of the coating films increase increasing the deposition time, without affecting the substrate morphology (no porosity alteration or fibers damaging). The possible substrate damage is influenced by target and substrate material, but it can be avoided modulating deposition time. Once the parameters are optimized, the models show suitable in vitro biological efficacy for applications in bone models, regenerative medicine and infection. Indeed, HA-based coatings favor cells adhesion on printed and electrospun fibers. For antibacterial applications, the ion doped TCP coatings can reduce the bacterial growth and adhesion (E.coli and S.aureus) on electrospun matrices. To conclude, it is possible achieve different properties applying nanostructured coatings with IJD technique on polymeric substrates, modulating deposition conditions to avoid substrate damage


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 6 | Pages 828 - 831
1 Jun 2006
Oakley J Kuiper JH

The role of bone-graft extenders in impaction revision surgery is becoming increasingly important. Tricalcium phosphate and hydroxyapatite have been shown to be both biocompatible and osteoconductive, yet many surgeons remain reluctant to use them. The difficulty in handling bone-graft extenders can be partly alleviated by using porous particles and adding clotted blood. In an in vitro model we measured the cohesive properties of various impaction graft mixes. Several factors were evaluated including the use of pure bone graft compared with mixes with extender, washing the bone and the addition of clotted blood. Our findings showed that pure allograft bone particles had significantly higher cohesion than when mixed with extender (p < 0.001). Washing had no effect on cohesion. The addition of clotted blood significantly increased the cohesion of both pure bone (p < 0.019) and mixes with pure bone and with porous graft extender (p < 0.044)


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 132 - 132
2 Jan 2024
Rau J
Full Access

Over the last decades, biodegradable metals emerged as promising materials for various biomedical implant applications, aiming to reduce the use of permanent metallic implants and, therefore, to avoid additional surgeries for implant removal. However, among the important issue to be solved is their fast corrosion - too high to match the healing rate of the bone tissue. The most effective way to improve this characteristic is to coat biodegradable metals with substituted calcium phosphates. Tricalcium phosphate (β-TCP) is a resorbable bioceramic widely used as synthetic bone graft. In order to modulate and enhance its biological performance, the substitution of Ca2+ by various metal ions, such as strontium (Sr2+), magnesium (Mg2+), iron (Fe2+) etc., can be carried out. Among them, copper (Cu2+), manganese (Mn2+), zinc (Zn2+) etc. could add antimicrobial properties against implant-related infections. Double substitutions of TCP containing couples of Cu2+/Sr2+ or Mn2+/Sr2+ ions are considered to be the most perspective based on the results of our study. We established that single phase Ca3−2x(MˊMˊˊ)x(PO4)2 solid solutions are formed only at x ≤ 0.286, where Mˊ and Mˊˊ—divalent metal ions, such as Zn2+, Mg2+, Cu2+, Mn2+, and that in case of double substitutions, the incorporation of Sr2+ ions allows one to extend the limit of solid solution due to the enlargement of the unit cell structure. We also reported that antimicrobial properties depend on the substitution ion occupation of Ca2+ crystal sites in the β-TCP structure. The combination of two different ions in the Ca5 position, on one side, and in the Ca1, Ca2, Ca3, and Ca4 positions, on another side, significantly boosts antimicrobial properties. In the present work, zinc-lithium (Zn-Li) biodegradable alloys were coated with double substituted Mn2+/Sr2+ β-TCP and double substituted Cu2+/ Sr2+ β-TCP, with the scope to promote osteoinductive effect (due to the Sr2+ presence) and to impart antimicrobial properties (thanks to Cu2+ or Mn2+ ions). The Pulsed Laser Deposition (PLD) method was applied as the coating's preparation technique. It was shown that films deposited using PLD present good adhesion strength and hardness and are characterized by a nanostructured background with random microparticles on the surface. For coatings characterization, Fourier Transform Infrared Spectroscopy, X-ray Diffraction, and Scanning Electron Microscopy coupled with Energy Dispersive X-ray and X-ray Photoelectron Spectroscopy were applied. The microbiology tests on the prepared coated Zn-Li alloys were performed with the Gram-positive (Staphylococcus aureus, Enterococcus faecalis) and Gram-negative (Salmonella typhimurium, Escherichia coli) bacteria strains and Candida albicans fungus. The antimicrobial activity tests showed that Mn2+/Sr2+ β-TCP -coated and Cu2+/Sr2+ β-TCP coated Zn-Li alloys were able to inhibit the growth of all five microorganisms. The prepared coatings are promising in improving the degradation behavior and biological properties of Zn-Li alloys, and further studies are necessary before a possible clinical translation


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_X | Pages 116 - 116
1 Apr 2012
Pickard R Sharma A Reynolds J Nnadi C Lavy C Bowden G Wilson-MacDonald J Fairbank J
Full Access

A literature review of bone graft substitutes for spinal fusion was undertaken from peer reviewed journals to form a basis for guidelines on their clinical use. A PubMed search of peer reviewed journals between Jan 1960 and Dec 2009 for clinical trials of bone graft substitutes in spinal fusion was performed. Emphasis was placed on RCTs. Small and duplicated RCTs were excluded. If no RCTs were available the next best clinical evidence was assessed. Data were extracted for fusion rates and complications. Of 929 potential spinal fusion studies, 7 RCTs met the inclusion criteria for BMP-2, 3 for BMP-7, 2 for Tricalcium Phosphate and 1 for Tricalcium Phosphate/Hydroxyapatite (TCP/HA). No clinical RCTs were found for Demineralised Bone Matrix (DBM), Calcium Sulphate or Calcium Silicate. There is strong evidence that BMP-2 with TCP/HA achieves similar or higher spinal fusion rates than autograft alone. BMP-7 achieved similar results to autograft. 3 RCTs support the use of TCP or TCP/HA and autograft as a graft extender with similar results to autograft alone. The best clinical evidence to support the use of DBMs are case control studies. The osteoinductive potential of DBM appears to be very low however. There are no clinical studies to support the use of Calcium Silicate. The current literature supports the use of BMP-2 with HA/TCP as a graft substitute. TCP or HA/TCP with Autograft is supported as a graft extender. There is not enough clinical evidence to support other bone graft substitutes. This study did not require ethics approval and no financial support was received


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_III | Pages 377 - 377
1 Jul 2011
Schouten R Hooper G
Full Access

The aim of this study was to examine the results of medial opening wedge high tibial osteotomies in which TRISOITE (hydroxyapatite tricalcium phosphate composite) wedges have been used as bone graft substitute and to compare the histological results with the clinical outcome. There were 36 medial opening wedge high tibial osteotomy performed in 33 patients with a mean age of 45 years. Medial compartment osteoarthritis with varus alignment was the indication in 32 patients. All were followed to union with a minimum follow up of 6 months (average 50 months). The surgical technique involved creating an oblique upper tibial osteotomy at an angle of 60 degrees from distal-medial to proximal lateral, passing distal to the insertion of the patellar ligament and preserving the lateral cortex. The osteotomy was opened to the desired angle of correction and preformed Triosite wedges were inserted. Stabilisation was obtained with a contoured titanium T-plate (ENZTEC). Re-operation was required for metal removal or conversion to total knee replacement in 10 cases. All of these patients had a biopsy of the osteotomy site. The clinical notes and x-rays were retrospectively reviewed. One patient developed a superficial infection post-operatively which was successfully treated with intravenous antibiotics. Bone grafting was required to achieve union in 1 case (2.8%). There were no cases of varus deformity recurrence as a result of graft collapse. Biopsies provided microscopic evidence of bony incorporation around the tricalcium phosphate with bone healing. Three patients were converted to total knee replacement with no problems at the osteotomy site. Triosite wedges appear to be a reliable synthetic bone graft substitute to act as a scaffold for bone healing in opening wedge osteotomies. They reduce the morbidity associated with iliac crest bone graft


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_I | Pages 106 - 106
1 Mar 2010
Yoon KS
Full Access

For successful long-term result of non-cemented total hip arthroplasty (THA), direct biological bond between bone and implant through bony ingrowth into the implant is essential. To facilitate strong bond between bone and implant, hydroxyapatite (HA) or hydroxyapatite and tricalcium phosphate (HA-TCP) coated implants have been developed. Early clinical results of HA coated implants were reported very satisfactorily. However, the long-term effects of HA or HA-TCP coating on implants were still controversial. We evaluated the effect of hydroxyapatite and tricalcium phosphate (HA-TCP) coating on fibermetal coated femoral stem. 37 cases using fibermetal coated femoral stem with additional HA-TCP coating and 38 cases using fibermetal coated femoral stem without additional HA-TCP coating were included with average follow-up for 127 months. The mean Harris hip score at final follow-up 91.2 in HA-TCP group and 90.5 in porous group. Engh’s score at final follow-up was 19.1 in HA-TCP group and 18.7 in porous group. Six acetabular components (8.0%, 3 cases in each group) were revised for excessive PE liner wear and liner dissociation from locking mechanism. One femoral stem without HA-TCP coating was considered as a loosening and failure. None of the remaining femoral components (98.7%) showed any signs of aseptic loosening. No significant differences between two groups were found in all parameters. A cement-less porous coated femoral stem provided good clinical function and survival in the medium term regardless of additional HA-TCP coating


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 100 - 100
1 Nov 2021
Papadia D Comincini F Pirchio P Puggioni V Bellanova G
Full Access

Introduction and Objective. Management of bone loss associated with bone contamination or infection represents a double biological and clinical challenge frequent in traumatology. The advent of new biomaterials can allow a different approach in the treatment of bone gap. The purpose of this study was to evaluate the prophylactic and therapeutic effectiveness of addition of a new absorbable bone substitute (BS) eluting different antibiotics in reconstruction of bone defects after infections and fractures with soft tissue damage. Materials and Methods. We conducted a review of patients with contaminated or infected bone defects treated using a new biomaterial, a porous composite of collagen matrices and Beta tricalcium phosphate (β TCP), able to provide a long-term release of different antibiotics. We have included treatment of osteomyelitis and osteosynthesis of exposed fracture (Gustilo Anderson 1–3b) or fractures with soft tissue damage and high risk of contamination. Surgical technique included debridement filling bone defect with BS eluting antibiotics, osteosynthesis (plate, nail, external fixator, kirschner wire), soft tissue coverage, and systemic antibiotic therapy. Radiographic and clinical data including complications (wound dehiscence, superficial or deep infection, osteomyelitis) were collected. Results. We treated 25 patients (21 male, 4 female) with mean age 47 yrs. (range 21–83). The locations treated (for incidence) was: 9 femurs (7 plates, 2 nail), 7 calcanei (one bilateral), 3 tibias, 2 forearms, 2 metatarsi, 2 hands, 1 elbow. 6 patients had large bone loss. 7 patients had bone infections (4 were Cierny Madern 4); 8 patients had osteosynthesis of exposed fractures Gustilo Anderson 1–3b (9 plate, one bilateral calcaneus). 8 patients had treatment for pseudoarthrosis of exposed fractures (6 femurs, 1 forearm, 1 metatarsus) and 3 patients a prophylactic treatment for calcaneal fractures with soft tissue damage. 4 deep infection were treated with multiple surgical debridement and new filling bone defect with BS eluting antibiotic with infection eradication. We have used a combination of vancomycin and gentamicin on 15 cases, vancomycin alone on 4 cases, combination of vancomycin and amikacin on 1 case and amikacin and Linezolid in a targeted multi drug resistance. At final follow-up functional outcome was good in all cases with bone healing. Conclusions. Extensive debridement is a fundamental requisite for eradication of bone infections and contamination. Filling of the bone void with loaded bio-composite eluting diversifiable local antibiotics with synergistic anti-biofilm activity is desirable. Treatment of this bone defects are advantaged when combining his reconstruction with BS and the possibility of release high antibiotic concentration at least for 10 days. This is an important complementing prophylactic and therapeutic antimicrobial option with adjuvant role to systemic therapy that enlarges the success rate


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 2 | Pages 267 - 271
1 Feb 2005
van Haaren EH Smit TH Phipps K Wuisman PIJM Blunn G Heyligers IC

Impacted morsellised allografts have been used successfully to address the problem of poor bone stock in revision surgery. However, there are concerns about the transmission of pathogens, the high cost and the shortage of supply of donor bone. Bone-graft extenders, such as tricalcium phosphate (TCP) and hydroxyapatite (HA), have been developed to minimise the use of donor bone. In a human cadaver model we have evaluated the surgical and mechanical feasibility of a TCP/HA bone-graft extender during impaction grafting revision surgery. A TCP/HA allograft mix increased the risk of producing a fissure in the femur during the impaction procedure, but provided a higher initial mechanical stability when compared with bone graft alone. The implications of the use of this type of graft extender in impaction grafting revision surgery are discussed


The Bone & Joint Journal
Vol. 96-B, Issue 6 | Pages 845 - 850
1 Jun 2014
Romanò CL Logoluso N Meani E Romanò D De Vecchi E Vassena C Drago L

The treatment of chronic osteomyelitis often includes surgical debridement and filling the resultant void with antibiotic-loaded polymethylmethacrylate cement, bone grafts or bone substitutes. Recently, the use of bioactive glass to treat bone defects in infections has been reported in a limited series of patients. However, no direct comparison between this biomaterial and antibiotic-loaded bone substitute has been performed. . In this retrospective study, we compared the safety and efficacy of surgical debridement and local application of the bioactive glass S53P4 in a series of 27 patients affected by chronic osteomyelitis of the long bones (Group A) with two other series, treated respectively with an antibiotic-loaded hydroxyapatite and calcium sulphate compound (Group B; n = 27) or a mixture of tricalcium phosphate and an antibiotic-loaded demineralised bone matrix (Group C; n = 22). Systemic antibiotics were also used in all groups. After comparable periods of follow-up, the control of infection was similar in the three groups. In particular, 25 out of 27 (92.6%) patients of Group A, 24 out of 27 (88.9%) in Group B and 19 out of 22 (86.3%) in Group C showed no infection recurrence at means of 21.8 (12 to 36), 22.1 (12 to 36) and 21.5 (12 to 36) months follow-up, respectively, while Group A showed a reduced wound complication rate. Our results show that patients treated with a bioactive glass without local antibiotics achieved similar eradication of infection and less drainage than those treated with two different antibiotic-loaded calcium-based bone substitutes. Cite this article: Bone Joint J 2014; 96-B:845–50