Advertisement for orthosearch.org.uk
Results 1 - 14 of 14
Results per page:
The Journal of Bone & Joint Surgery British Volume
Vol. 79-B, Issue 5 | Pages 844 - 848
1 Sep 1997
Kobayashi A Freeman MAR Bonfield W Kadoya Y Yamac T Al-Saffar N Scott G Revell PA

Our aim was to analyse the influence of the size, shape and number of particles on the pathogenesis of osteolysis. We obtained peri-implant tissues from 18 patients having revision surgery for aseptically loosened Freeman total knee replacements (10), Charnley total hip replacements (3) and Imperial College/London Hospital double-cup surface hip replacements (5). The size and shape of the polyethylene particles were characterised using SEM and their concentration was calculated. The results were analysed with reference to the presence of radiological osteolysis.

The concentration of polyethylene particles in 6 areas with osteolysis was significantly higher than that in 12 areas without osteolysis. There were no significant differences between the size and shape of the particles in these two groups.

We conclude that the most critical factor in the pathogenesis of osteolysis is the concentration of polyethylene particles accumulated in the tissue.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 83 - 83
1 Jul 2014
Bistolfi A Bracco P Banche G Allizond V Boffano M Cimino A del Prever EB Cuffini A
Full Access

Summary

Prosthetic UHMWPE added with vitamin E and crosslinked UHMWPE are able to decrease significantly the adhesion of various bacterial and fungal strains limiting biomaterial associated infection and consequent implant failure.

Introduction

Polyethylene abrasive and oxidative wear induces overtime in vivo a foreign-body response and consequently osteolysis, pain and need of implant revision. To solve these problems the orthopaedic research has been addressed to develop new biomaterials such as a crosslinked polyethylene with a higher molecular mass than standard Ultra High Molecular Weight Polyethylene (UHMWPE), and consequently a higher abrasive wear resistance and an antioxidant (vitamin E)-added UHMWPE to avoid oxidative wear. Nevertheless a feared complication of implant surgery is bacterial or fungal infection, initiated by microbial adhesion and biofilm formation, and related to the biomaterial surface characteristics. Staphylococci are the most common microorganisms causing biomaterial associated infection (BAI), followed by streptococci, Gram-negative bacilli and yeasts. With the aim to prevent BAI, the purpose of this study was to evaluate the adhesion of various microbial strains on different prosthetic materials with specific surface chemical characteristics, used in orthopaedic surgery.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 149 - 149
11 Apr 2023
Gagnier J O'Connor J
Full Access

We sought to determine the relationship between patient preoperative psychological factors and postoperative THA outcomes. We performed an electronic search up to December 2021 using the following terms: “(mental OR psychological OR psychiatric) AND (function OR trait OR state OR predictor OR health) AND (outcome OR success OR recovery OR response) AND total joint arthroplasty)”. Peer-reviewed, English language studies regarding THA outcomes were analyzed for preoperative patient mental health metrics and objective postoperative results regarding pain, functionality and surgical complications. We extracted study data, assessed the risk of bias of included studies, grouped them by outcome measure and performed a GRADE assessment. Seventeen of 702 studies fulfilled inclusion criteria and were included in the review. Overall, compared to cohorts with a normal psychological status, patients with higher objective measures of preoperative depression and anxiety reported increased postoperative pain, decreased functionality and greater complications following THA. Additionally, participants with lower self-efficacy or somatization were found to have worse functional outcomes. Following surgery, both early and late pain scores remained higher in patients with preoperative depression and anxiety. Preoperative depression and anxiety may negatively impact patient reported postoperative pain, physical function and complications following THA. A meta-analysis was not performed because of the heterogeneity of studies, specifically the use of differing pain scales and measures of physical and psychological function as well as varied follow-up times. Future research could test interventions to treat pre-operative depression or anxiety and explore longitudinal outcomes in THA patients. Surgeons should consider the preoperative psychological status when counseling patients regarding expected surgical outcomes and attempt to treat a patient's depression or anxiety prior to undergoing total hip arthroplasty


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 124 - 124
11 Apr 2023
Woodford S Robinson D Lee P Abduo J Dimitroulis G Ackland D
Full Access

Total temporomandibular joint (TMJ) replacements reduce pain and improve quality of life in patients suffering from end-stage TMJ disorders, such as osteoarthritis and trauma. Jaw kinematics measurements following TMJ arthroplasty provide a basis for evaluating implant performance and jaw function. The aim of this study is to provide the first measurements of three-dimensional kinematics of the jaw in patients following unilateral and bilateral prosthetic TMJ surgeries. Jaw motion tracking experiments were performed on 7 healthy control participants, 3 unilateral and 1 bilateral TMJ replacement patients. Custom-made mouthpieces were manufactured for each participant's mandibular and maxillary teeth, with each supporting three retroreflective markers anterior to the participant's lip line. Participants performed 15 trials each of maximum jaw opening, lateral and protrusive movements. Marker trajectories were simultaneously measured using an optoelectronic tracking system. Laser scans taken of each dental plate, together with CT scans of each patient, were used to register the plate position to each participant's jaw geometry, allowing 3D condylar motion to be quantified from the marker trajectories. The maximum mouth opening capacity of joint replacement patients was comparable to healthy controls with average incisal inferior translations of 37.5mm, 38.4mm and 33.6mm for the controls, unilateral and bilateral joint replacement patients respectively. During mouth opening the maximum anterior translation of prosthetic condyles was 2.4mm, compared to 10.6mm for controls. Prosthetic condyles had limited anterior motion compared to natural condyles, in unilateral patients this resulted in asymmetric opening and protrusive movements and the capacity to laterally move their jaw towards their pathological side only. For the bilateral patient, protrusive and lateral jaw movement capacity was minimal. Total TMJ replacement surgery facilitates normal mouth opening capacity and lateral and inferior condylar movements but limits anterior condylar motion. This study provides future direction for TMJ implant design


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_4 | Pages 52 - 52
1 Apr 2018
Rieker C
Full Access

Total Hip Arthroplasty (THA) is a well-established, cost-effective treatment for improving function and alleviating pain in patients who have disabling hip disease with excellent long-term results. Based on the excellent results, there is an ongoing trend for THA to be performed in younger and more active patients, having higher physical demands on their new total joints. Polyethylene (PE) wear and its biological consequences are one of the main causes of implant failure in THA. Macrophages phagocytise PE wear particles and this will result in osteolysis and loss of periprosthetic bone. The risk of these complications can be estimated in relation to the amount of volumetric wear based on two assumptions: that the number of PE particles dispersed in the peri-prosthetic tissues is controlled by the amount of PE wear; and that the development of osteolysis and the resulting aseptic loosening is triggered by these PE particles. Based on these assumptions, a model was developed to estimate the osteolysis-free life of a THA, depending on the Linear Wear Rate (LWR) and femoral head size of the PE bearing. A review of the literature was conducted to provide an estimate of the radiologic osteolysis threshold based on the volumetric wear of the PE bearing. This review demonstrates that this radiologic osteolysis threshold is approximated 670 mm3 for conventional PE. The osteolysis-free life of the THA was estimated by simply dividing this threshold volume by the annual Volumetric Wear Rate (VWR) of the bearing. The annual VWR is basically controlled by two parameters: (1) annual LWR and (2) head size, and was calculated by using published formulae. For 28 mm heads, following osteolysis-free life was determined in function of the annual LWR. LWR: 10 µm/y => 116.6 years / LWR: 25 µm/y => 46.6 years / LWR: 50 µm/y => 23.3 years / LWR: 100 µm/y => 11.6 years. For 40 mm heads, following osteolysis-free life was determined in function of the annual LWR. LWR: 10 µm/y => 57.1 years / LWR: 25 µm/y => 22.9 years / LWR: 50 µm/y => 11.4 years / LWR: 100 µm/y => 5.7 years. The osteolysis-free life determined by this model is in good agreement with the clinical results of PE bearings having a 28 mm head size and demonstrates that extreme low LWRs are mandatory to assure a descent osteolysis-free life for THA (PE bearings) using large heads, such as 40 mm. For such head sizes, small variations of the LWR may have large impacts on the osteolysis-free life of the THA


Bone & Joint Research
Vol. 6, Issue 8 | Pages 499 - 505
1 Aug 2017
Morrison RJM Tsang B Fishley W Harper I Joseph JC Reed MR

Objectives. We have increased the dose of tranexamic acid (TXA) in our enhanced total joint recovery protocol at our institution from 15 mg/kg to 30 mg/kg (maximum 2.5 g) as a single, intravenous (IV) dose. We report the clinical effect of this dosage change. Methods. We retrospectively compared two cohorts of consecutive patients undergoing total hip arthroplasty (THA) or total knee arthroplasty (TKA) surgery in our unit between 2008 and 2013. One group received IV TXA 15 mg/kg, maximum 1.2 g, and the other 30 mg/kg, maximum 2.5 g as a single pre-operative dose. The primary outcome for this study was the requirement for blood transfusion within 30 days of surgery. Secondary measures included length of hospital stay, critical care requirements, re-admission rate, medical complications and mortality rates. Results. A total of 1914 THA and 2537 TKA procedures were evaluated. In THA, the higher dose of TXA was associated with a significant reduction in transfusion (p = 0.02, risk ratio (RR) 0.74, 95% confidence interval (CI) 0.58 to 0.96) and rate of re-admission (p < 0.001, RR 0.50, 95% CI 0.35 to 0.71). There were reductions in the requirement for critical care (p = 0.06, RR 0.55, 95% CI 0.31 to 1.00), and in the length of stay from 4.7 to 4.3 days (p = 0.02). In TKA, transfusion requirements (p = 0.049, RR 0.64, 95% CI 0.41 to 0.99), re-admission rate (p = 0.001, RR 0.56, 95% CI 0.39 to 0.80) and critical care requirements (p < 0.003, RR 0.34, 95% CI 0.16 to 0.72) were reduced with the higher dose. Mean length of stay reduced from 4.6 days to 3.6 days (p < 0.01). There was no difference in the incidence of deep vein thrombosis, pulmonary embolism, gastrointestinal bleed, myocardial infarction, stroke or death in THA and TKA between cohorts. Conclusion. We suggest that a single pre-operative dose of TXA, 30 mg/kg, maximum 2.5g, results in a lower transfusion requirement compared with a lower dose in patients undergoing elective primary hip and knee arthroplasty. However, these findings should be interpreted in the context of the retrospective non-randomised study design. Cite this article: R. J. M. Morrison, B. Tsang, W. Fishley, I. Harper, J. C. Joseph, M. R. Reed. Dose optimisation of intravenous tranexamic acid for elective hip and knee arthroplasty: The effectiveness of a single pre-operative dose. Bone Joint Res 2017;6:499–505. DOI: 10.1302/2046-3758.68.BJR-2017-0005.R1


Bone & Joint Research
Vol. 2, Issue 10 | Pages 220 - 226
1 Oct 2013
Chang Y Tai C Hsieh P Ueng SWN

Objectives . The objective of this study is to determine an optimal antibiotic-loaded bone cement (ALBC) for infection prophylaxis in total joint arthroplasty (TJA). Methods. We evaluated the antibacterial effects of polymethylmethacrylate (PMMA) bone cements loaded with vancomycin, teicoplanin, ceftazidime, imipenem, piperacillin, gentamicin, and tobramycin against methicillin-sensitive Staphylococcus aureus (MSSA), methicillin-resistant Staph. aureus (MRSA), coagulase-negative staphylococci (CoNS), Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae. Standardised cement specimens made from 40 g PMMA loaded with 1 g antibiotics were tested for elution characteristics, antibacterial activities, and compressive strength in vitro. . Results. The ALBC containing gentamicin provided a much longer duration of antibiotic release than those containing other antibiotic. Imipenem-loading on the cement had a significant adverse effect on the compressive strength of the ALBC, which made it insufficient for use in prosthesis fixation. All of the tested antibiotics maintained their antibacterial properties after being mixed with PMMA. The gentamicin-loaded ALBC provided a broad antibacterial spectrum against all the test organisms and had the greatest duration of antibacterial activity against MSSA, CoNS, P. aeruginosa and E. coli. . Conclusion. When considering the use of ALBC as infection prophylaxis in TJA, gentamicin-loaded ALBC may be a very effective choice. Cite this article: Bone Joint Res 2013;2:220–6


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_13 | Pages 49 - 49
1 Mar 2013
Lin Y Hall A Smith I Salter D Simpson H
Full Access

The cartilage diseases such as osteoarthritis and chondral injuries are considered irreversible and the result of recent treatments remains not optimal. One of the reasons is due to the poor understanding of chondrocyte behaviours. To understand more about cartilage, we designed a series of novel experiments. First, a total joint of bovine metatarsophalanges was isolated as our novel model. We chose it because the configuration and the healing potential were similar to human, and many variables of large animal studies could be controlled in laboratory. The model not only provided a good ex vivo platform for cartilage researches but also connected in vitro cellular studies and in vivo animal studies. To mimic joint movement a special driving machine was designed. To characterise the novel model viabilities of chondrocytes and contents of sulphated glycosaminoglycan (GAGs) in extracellular matrixes were measured every seven days. The preliminary results revealed the viabilities of chondrocytes remained above 80% alive in the middle zone after four-weeks culture. The GAGs contents decreased after this culturing period. The experiments still carry on going to compare the static and dynamic models which joint movement could be a determinative factor to the viability of chondrocytes. Cellular treatment is the recent mainstream for cartilage diseases. If advanced knowledge in chondrocyte behaviours could be obtained from this model, development of optimal treatment will be possible in the future


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 200 - 200
1 Jul 2014
Oral E Neils A Doshi B Muratoglu O
Full Access

Summary. Low energy irradiation of vitamin E blended UHMWPE is feasible to fabricate total joint implants with high wear resistance and impact strength. Introduction. Irradiated ultra-high molecular weight polyethylene (UHMWPE), used in the fabrication of joint implants, has increased wear resistance. But, increased crosslinking decreases the mechanical strength of the polymer, thus limiting the crosslinking to the surface is desirable. Here, we used electron beam irradiation with low energy electrons to limit the penetration of the radiation exposure and achieve surface cross-linking. Methods. Medical grade 0.1wt% vitamin E blended UHMWPE (GUR1050) was consolidated and irradiated using an electron beam at 0.8 and 3 MeV to 150 kGy. Fourier Transform Infrared Spectroscopy (FTIR) was used from the surface along the depth at an average of 32 scans and a resolution of 4 cm. −1. A transvinylene index (TVI) was calculated by normalizing the absorbance at 965 cm. −1. (950–980cm. −1. ) against 1895 cm. −1. (1850 – 1985 cm. −1. ). TVI in irradiated UHMWPE is linearly correlated with the radiation received [3]. Vitamin E indices were calculated as the ratio of the area under 1265 cm. −1. (1245–1275 cm. −1. ) normalized by the same. Pin-on-disc (POD) wear testing was conducted on cylindrical pins (9 mm dia., 13 mm length, n=3) as previously described at 2 Hz [4] for 1.2 million cycles (MC). Wear rate was measured as the linear regression of gravimetric weight change vs. number of cycles from 0.5 to 1.2 MC. Double notched IZOD impact testing was performed (63.5 × 12.7 × 6.35mm) in accordance with ASTM F648. Cubes (1 cm) from 0.1wt% blended and 150 kGy irradiated pucks (0.8 MeV) were soaked in vitamin E at 110°C for 1 hour followed by homogenization at 130°C for 48 hours. Results. The penetration of the electron beam for cross-linking was limited at low beam energy and cross-linking of the surface 2 mm was achieved. The wear rate of samples irradiated at 0.8 and 3 MeV was 1.12±0.15, and 0.98±0.11, respectively (p»0.5). In addition, the wear rate of the surface (0.8 MeV) irradiated UHMWPE was 0.33±0.02 mg/MC 1 mm below the surface. The impact strength of UHMWPE irradiated at 0.8 MeV was 73 kJ/m. 2. and 54.2 kJ/m. 2. for that irradiated at 3 MeV (p=0.001). Doping with vitamin E and homogenization increased the surface vitamin E concentration from undetectable levels to 0.11±0.01. Discussion. The wear rate of this surface cross-linked UHMWPE was comparable to uniformly cross-linked UHMWPEs irradiated at higher electron beam energies. Even lower wear rate subsurface suggested the feasibility of machining 1 mm from the surface in implant fabrication. Limiting cross-linking to the surface resulted in higher impact strength compared to a uniformly cross-linked UHMWPE. Vitamin E was optionally replenished by additional doping after cross-linking; an advantage of this method may be increased oxidation resistance


The Journal of Bone & Joint Surgery British Volume
Vol. 83-B, Issue 3 | Pages 448 - 458
1 Apr 2001
Jones LC Frondoza C Hungerford DS

The pathogenesis of aseptic loosening of total joint prostheses is not clearly understood. Two features are associated with loosened prostheses, namely, particulate debris and movement of the implant. While numerous studies have evaluated the cellular response to particulate biomaterials, few have investigated the influence of movement of the implant on the biological response to particles. Our aim was therefore to test the hypothesis that excessive mechanical stimulation of the periprosthetic tissues induces an inflammatory response and that the addition of particulate biomaterials intensifies this. We allocated 66 adult Beagle dogs to four groups as follows: stable implants with (I) and without (II) particulate polymethylmethacrylate (PMMA) and moving implants with (III) and without (IV) particulate PMMA. They were then evaluated at 2, 4, 6, 12 and 24 weeks. The stable implants were well tolerated and a thin, fibrous membrane of connective tissue was observed. There was evidence of positive staining in some cells for interleukin-6 (IL-6). Addition of particulate PMMA around the stable implants resulted in an increase in the fibroblastic response and positive staining for IL-6 and tumour necrosis factor-alpha (TNF-α). By contrast, movement of the implant resulted in an immediate inflammatory response characterised by large numbers of histiocytes and cytokine staining for IL-1ß, TNF-α and IL-6. Introduction of particulate PMMA aggravated this response. Animals with particulate PMMA and movement of the implant have an intense inflammatory response associated with accelerated bone loss. Our results indicate that the initiation of the inflammatory response to biomaterial particles was much slower than that to gross mechanical instability. Furthermore, when there was both particulate debris and movement, there was an amplification of the adverse tissue response as evidenced by the presence of osteolysis and increases in the presence of inflammatory cells and their associated cytokines


Bone & Joint 360
Vol. 3, Issue 4 | Pages 35 - 38
1 Aug 2014
Hammerberg EM


Bone & Joint Research
Vol. 2, Issue 9 | Pages 193 - 199
1 Sep 2013
Myers KR Sgaglione NA Grande DA

The treatment of osteochondral lesions and osteoarthritis remains an ongoing clinical challenge in orthopaedics. This review examines the current research in the fields of cartilage regeneration, osteochondral defect treatment, and biological joint resurfacing, and reports on the results of clinical and pre-clinical studies. We also report on novel treatment strategies and discuss their potential promise or pitfalls. Current focus involves the use of a scaffold providing mechanical support with the addition of chondrocytes or mesenchymal stem cells (MSCs), or the use of cell homing to differentiate the organism’s own endogenous cell sources into cartilage. This method is usually performed with scaffolds that have been coated with a chemotactic agent or with structures that support the sustained release of growth factors or other chondroinductive agents. We also discuss unique methods and designs for cell homing and scaffold production, and improvements in biological joint resurfacing. There have been a number of exciting new studies and techniques developed that aim to repair or restore osteochondral lesions and to treat larger defects or the entire articular surface. The concept of a biological total joint replacement appears to have much potential.

Cite this article: Bone Joint Res 2013;2:193–9.


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 3 | Pages 400 - 404
1 Mar 2008
Johansson HR Skripitz R Aspenberg P

We have examined the deterioration of implant fixation after withdrawal of parathyroid hormone (PTH) in rats. First, the pull-out force for stainless-steel screws in the proximal tibia was measured at different times after withdrawal. The stimulatory effect of PTH on fixation was lost after 16 days. We then studied whether bisphosphonates could block this withdrawal effect. Mechanical and histomorphometric measurements were conducted for five weeks after implantation. Subcutaneous injections were given daily. Specimens treated with either PTH or saline during the first two weeks showed no difference in the mechanical or histological results (pull-out force 76 N vs 81 N; bone volume density 19% vs 20%). Treatment with PTH for two weeks followed by pamidronate almost doubled the pull-out force (152 N; p < 0.001) and the bone volume density (37%; ANOVA, p < 0.001). Pamidronate alone did not have this effect (89 N and 25%, respectively). Thus, the deterioration can be blocked by bisphosphonates. The clinical implications are discussed.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 5 | Pages 686 - 692
1 May 2007
Bolland BJRF New AMR Madabhushi SPG Oreffo ROC Dunlop DG

The complications of impaction bone grafting in revision hip replacement includes fracture of the femur and subsidence of the prosthesis. In this in vitro study we aimed to investigate whether the use of vibration, combined with a perforated tamp during the compaction of morsellised allograft would reduce peak loads and hoop strains in the femur as a surrogate marker of the risk of fracture and whether it would also improve graft compaction and prosthetic stability.

We found that the peak loads and hoop strains transmitted to the femoral cortex during graft compaction and subsidence of the stem in subsequent mechanical testing were reduced. This innovative technique has the potential to reduce the risk of intra-operative fracture and to improve graft compaction and therefore prosthetic stability.