Advertisement for orthosearch.org.uk
Results 1 - 12 of 12
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 40 - 40
4 Apr 2023
Evrard R Maistriaux L Manon J Rafferty C Cornu O Gianello P Lengelé B Schubert T
Full Access

The purpose of this study is to enhance massive bone allografts osseointegration used to reconstruct large bone defects. These allografts show >50% complication rate requiring surgical revision in 20% cases. A new protocol for total bone decellularisation exploiting the vasculature can offer a reduction of postoperative complication by annihilating immune response and improving cellular colonization/ osseointegration. The nutrient artery of 18 porcine bones - humerus/femur/radius/ulna - was cannulated. The decellularization process involved immersion and sequential perfusion with specific solvents over a course of one week. Perfusion was realized by a peristaltic pump (mean flow rate: 6ml/min). The benefit of arterial perfusion was compared to a control group kept in immersion baths without perfusion. Bone samples were processed for histology (HE, Masson's trichrome and DAPI for cell detection), immunohistochemistry (IHC : Collagen IV/elastin for intraosseous vascular system evaluation, Swine Leukocyte Antigen – SLA for immunogenicity in addition to cellular clearance) and DNA quantification. Sterility and solvent residues in the graft were also evaluated with thioglycolate test and pH test respectively. Compared to native bones, no cells could be detected and residual DNA was <50ng/mg dry weight. Intramedullary spaces were completely cleaned. IHC showed the preservation of intracortical vasculature with channels bounded by Collagen IV and elastin within Haversian systems. IHC also showed a significant decrease in SLA signaling. All grafts were sterile at the last decellularization step and showed no solvent residue. The control group kept in immersion baths, paired with 6 perfused radii/ulnae, showed that the perfusion is mandatory to ensure complete decellularisation. Our results prove the effectiveness of a new concept of total bone decellularisation by perfusion. These promising results could lead to a new technique of Vascularized Composite Allograft transposable to pre-clinical and clinical models


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_16 | Pages 36 - 36
1 Oct 2016
Shah K Sudsok P Morrell D Gartland A Wilkinson J
Full Access

We have previously observed an increase in total bone mineral density and reduced bone turnover (TRAP5b and osteocalcin) in patients with well-functioning metal-on-metal hip resurfacing (MOMHR). Here, we provide data to support the hypothesis that osteoclast differentiation and function is altered in this patient population, and that this effect is transferrable through their serum. Patients with well-functioning MOMHR (cases, n=18) at a median follow-up of 8 years were individually matched for gender, age and time-since-surgery to a low-exposure group consisting of patients with THA (controls, n=18). The monocyte fraction of patient peripheral blood was isolated and differentiated into osteoclasts on dentine wafers using RANKL and M-CSF supplemented media (osteoclastogenic media, OM). Cultures were monitored for the onset of resorption, at which point the cells were treated with OM, autologous serum or serum from matched MOMHR/THA donors, all supplemented with RANKL and M-CSF. At the end of the culture, cells were TRAP-stained and quantified using CellD Software Package, Olympus. When cells were differentiated in standard osteoclastogenic media, the resorbing ability of osteoclasts derived from MOMHR patients was reduced 22%(p<0.0079) compared to THA. The resorbing ability of osteoclasts generated from MOMHR patients and differentiated in autologous serum was reduced 33%(p<0.0001), whilst matched THA serum caused a smaller reduction of 14%(p<0.01). When cells derived from THA patients were differentiated in autologous serum, the resorbing ability of osteoclasts was similarly reduced by 35%(p<0.0001), whilst the matched MOMHR serum also caused a reduction of 21%(p<0.0001). This data suggests that prior exposure to higher circulating Co and Cr in patients with MOMHR reduces osteoclastogenesis, and that the detrimental effect on the functionality of mature osteoclasts is transferable through the serum. This has implications for systemic bone health of patients with MOMHR or modular taper junctions


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 6 - 6
1 Jul 2014
Bostrom M Courtland H Grosso M Sutherland J Stoner K Yang X van der Meulen M
Full Access

Summary Statement. The modulation of both quantity and quality of peri-implant bone with either PTH or loading may be viable options to improve implant fixation and patient outcomes. A strong bone-implant interface is essential for successful joint replacement surgery. This study investigated the differences in bone surrounding and within a porous titanium implant after single or combined treatment with two anabolic bone therapies: intermittent parathyroid hormone (teriparatide) and mechanical loading. Porous titanium implants were inserted bilaterally on the distal lateral femurs of rabbits. The right implant was loaded daily (1 MPa, 50 cycles/day) while the left implant was not. Rabbits received daily PTH injections (20 ug/kg) or saline vehicle. Periprosthetic cancellous bone 0.5, 1.0, and 2.0 mm below the implant surface, bone at the 0.25 mm bone-implant interface and total bone within each implant were examined using tissue-level analyses (quantitative backscattered electron microscopy), cellular analyses (immunohistochemistry staining of osteoblasts with procollagen-1 and TRAP staining of osteoclasts), and shear testing (implant-bone interface). Statistical significance was determined using GEE models (p<0.05). For tissue located 0.5 mm below the implant, significant increases in bone area per total area (BA/TA) were observed with PTH treatment (56%) and with loading (27%). Further, an 18% increase in mineralization density with PTH treatment and a 20% increase in mineralization density with loading was found. Loading effects were not present beyond the 0.5 mm periprosthetic region, but PTH significantly increased BA/TA 2.0 mm below and mineralization density 1.0 mm below the implant. Tissue-level changes were supported by increases in osteoblast activity 0.5 mm below the implant with PTH (79%) and loading (34%), as well as by minimal osteoclast changes. At the 0.25 mm implant-bone interface PTH and loading increased BA/TA (16% and 23%, respectively), but only loading increased mineralization density (7%). Further, total integrated bone area was increased 35% with PTH. Both PTH and loading enhanced the mechanical integrity of the implant-bone; shear strength increased 34% and 60%, respectively. Although combined treatment was not synergistic, both PTH and loading individually enhanced the amount and mineralization density of bone at the implant interface and immediately below the interface, thereby increasing the mechanical strength of the metal-bone interface. This research suggests that modulation of both quantity and quality of peri-implant bone may be viable options to improve implant fixation and patient outcomes


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 5 | Pages 670 - 675
1 May 2009
Agholme F Aspenberg P

Soaking bone grafts in a bisphosphonate solution before implantation can prevent their resorption and increase the local bone density in rats and humans. However, recent studies suggest that pre-treatment of allografts with bisphosphonate can prevent bone ingrowth into impaction grafts. We tested the hypothesis that excessive amounts of bisphosphonate would also cause a negative response in less dense grafts. We used a model where non-impacted metaphyseal bone grafts were randomised into three groups with either no bisphosphonate, alendronate followed by rinsing, and alendronate without subsequent rinsing, and inserted into bone chambers in rats. The specimens were evaluated histologically at one week, and by histomorphometry and radiology at four weeks. At four weeks, both bisphosphonate groups showed an increase in the total bone content, increased newly formed bone, and higher radiodensity than the controls. In spite of being implanted in a chamber with a limited opportunity to diffuse, even an excessive amount of bisphosphonate improved the outcome. We suggest that the negative results seen by others could be due to the combination of densely compacted bone and a bisphosphonate. We suggest that bisphosphonates are likely to have a negative influence where resorption is a prerequisite to create space for new bone ingrowth


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVI | Pages 54 - 54
1 Aug 2012
Elkasrawy M Immel D Wen X Liu X Liang L Hamrick M
Full Access

Myostatin (GDF-8) is known to play an important role in muscle regeneration, and myostatin is also expressed during the early phases of fracture healing. In this study we used fluorescent immunohistochemistry to define the temporal and spatial localization of myostatin during muscle and bone repair following deep penetrant injury in a mouse model. We then used hydrogel delivery of exogenous myostatin in the same injury model to determine the effects of myostatin exposure on muscle and bone healing. Results show that while myostatin was constitutively expressed in the cytoplasm of intact skeletal muscle fibers, a pool of intense myostatin staining was observed amongst injured skeletal muscle fibers 12-24 hours post-surgery. Myostatin was also expressed in the soft callus chondrocytes 4 days following osteotomy. Hydrogel delivery of 10 or 100 ug/ml recombinant myostatin decreased fracture callus cartilage area relative to total callus area in a dose-dependent manner by 41% and 80% (p<0.05), respectively, compared to vehicle treatment. Myostatin treatment also dose-dependently decreased fracture callus total bone volume by 23% and 47% (p<0.05), with the higher dose of recombinant myostatin yielding the greatest decrease in callus bone volume. Finally, exogenous myostatin treatment caused a significant, dose-dependent increase in fibrous tissue formation in skeletal muscle. Together, these findings suggest that myostatin may inhibit bone repair after traumatic musculoskeletal injury through both autocrine (soft-callus chondrocytes) and paracrine (surrounding injured muscle fibers) mechanisms. Thus, early pharmacological inhibition of myostatin is likely to improve the regenerative potential of both muscle and bone following deep penetrant musculoskeletal injury


Bone & Joint Research
Vol. 6, Issue 6 | Pages 366 - 375
1 Jun 2017
Neves N Linhares D Costa G Ribeiro CC Barbosa MA

Objectives

This systematic review aimed to assess the in vivo and clinical effect of strontium (Sr)-enriched biomaterials in bone formation and/or remodelling.

Methods

A systematic search was performed in Pubmed, followed by a two-step selection process. We included in vivo original studies on Sr-containing biomaterials used for bone support or regeneration, comparing at least two groups that only differ in Sr addition in the experimental group.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 10 | Pages 1433 - 1438
1 Oct 2012
Lam W Guo X Leung K Kwong KSC

This study was designed to test the hypothesis that the sensory innervation of bone might play an important role in sensing and responding to low-intensity pulsed ultrasound and explain its effect in promoting fracture healing. In 112 rats a standardised mid-shaft tibial fracture was created, supported with an intramedullary needle and divided into four groups of 28. These either had a sciatic neurectomy or a patellar tendon resection as control, and received the ultrasound or not as a sham treatment. Fracture union, callus mineralisation and remodelling were assessed using plain radiography, peripheral quantitative computed tomography and histomorphology.

Daily ultrasound treatment significantly increased the rate of union and the volumetric bone mineral density in the fracture callus in the neurally intact rats (p = 0.025), but this stimulating effect was absent in the rats with sciatic neurectomy. Histomorphology demonstrated faster maturation of the callus in the group treated with ultrasound when compared with the control group. The results supported the hypothesis that intact innervation plays an important role in allowing low-intensity pulsed ultrasound to promote fracture healing.


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 1 | Pages 131 - 139
1 Jan 2011
Daugaard H Elmengaard B Andreassen TT Baas J Bechtold JE Soballe K

Impaction allograft is an established method of securing initial stability of an implant in arthroplasty. Subsequent bone integration can be prolonged, and the volume of allograft may not be maintained. Intermittent administration of parathyroid hormone has an anabolic effect on bone and may therefore improve integration of an implant.

Using a canine implant model we tested the hypothesis that administration of parathyroid hormone may improve osseointegration of implants surrounded by bone graft. In 20 dogs a cylindrical porous-coated titanium alloy implant was inserted into normal cancellous bone in the proximal humerus and surrounded by a circumferential gap of 2.5 mm. Morsellised allograft was impacted around the implant. Half of the animals were given daily injections of human parathyroid hormone (1–34) 5 μg/kg for four weeks and half received control injections. The two groups were compared by mechanical testing and histomorphometry. We observed a significant increase in new bone formation within the bone graft in the parathyroid hormone group. There were no significant differences in the volume of allograft, bone-implant contact or in the mechanical parameters.

These findings suggest that parathyroid hormone improves new bone formation in impacted morsellised allograft around an implant and retains the graft volume without significant resorption. Fixation of the implant was neither improved nor compromised at the final follow-up of four weeks.


Bone & Joint Research
Vol. 1, Issue 7 | Pages 145 - 151
1 Jul 2012
Sharma A Meyer F Hyvonen M Best SM Cameron RE Rushton N

Objectives

There is increasing application of bone morphogenetic proteins (BMPs) owing to their role in promoting fracture healing and bone fusion. However, an optimal delivery system has yet to be identified. The aims of this study were to synthesise bioactive BMP-2, combine it with a novel α-tricalcium phosphate/poly(D,L-lactide-co-glycolide) (α-TCP/PLGA) nanocomposite and study its release from the composite.

Methods

BMP-2 was synthesised using an Escherichia coli expression system and purified. In vitro bioactivity was confirmed using C2C12 cells and an alkaline phosphatase assay. The modified solution-evaporation method was used to fabricate α-TCP/PLGA nanocomposite and this was characterised using X-ray diffraction and scanning electron microscopy. Functionalisation of α-TCP/PLGA nanocomposite by adsorption of BMP-2 was performed and release of BMP-2 was characterised using an enzyme-linked immunosorbent assay (ELISA).


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 3 | Pages 461 - 467
1 Mar 2010
Wik TS Østbyhaug PO Klaksvik J Aamodt A

The cortical strains on the femoral neck and proximal femur were measured before and after implantation of a resurfacing femoral component in 13 femurs from human cadavers. These were loaded into a hip simulator for single-leg stance and stair-climbing. After resurfacing, the mean tensile strain increased by 15% (95% confidence interval (CI) 6 to 24, p = 0.003) on the lateral femoral neck and the mean compressive strain increased by 11% (95% CI 5 to 17, p = 0.002) on the medial femoral neck during stimulation of single-leg stance. On the proximal femur the deformation pattern remained similar to that of the unoperated femurs.

The small increase of strains in the neck area alone would probably not be sufficient to cause fracture of the neck However, with patient-related and surgical factors these strain changes may contribute to the risk of early periprosthetic fracture.


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 2 | Pages 298 - 303
1 Feb 2010
Toom A Suutre S Märtson A Haviko T Selstam G Arend A

We have developed an animal model to examine the formation of heterotopic ossification using standardised muscular damage and implantation of a beta-tricalcium phosphate block into a hip capsulotomy wound in Wistar rats. The aim was to investigate how cells originating from drilled femoral canals and damaged muscles influence the formation of heterotopic bone. The femoral canal was either drilled or left untouched and a tricalcium phosphate block, immersed either in saline or a rhBMP-2 solution, was implanted. These implants were removed at three and 21 days after the operation and examined histologically, histomorphometrically and immunohistochemically.

Bone formation was seen in all implants in rhBMP-2-immersed, whereas in those immersed in saline the process was minimal, irrespective of drilling of the femoral canals. Bone mineralisation was somewhat greater in the absence of drilling with a mean mineralised volume to mean total volume of 18.2% (sd 4.5) versus 12.7% (sd 2.9, p < 0.019), respectively.

Our findings suggest that osteoinductive signalling is an early event in the formation of ectopic bone. If applicable to man the results indicate that careful tissue handling is more important than the prevention of the dissemination of bone cells in order to avoid heterotopic ossification.


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 11 | Pages 1575 - 1580
1 Nov 2005
Böstman OM Laitinen OM Tynninen O Salminen ST Pihlajamäki HK

Despite worldwide clinical use of bio-absorbable devices for internal fixation in orthopaedic surgery, the degradation behaviour and tissue replacement of these implants are not fully understood.

In a long-term experimental study, we have determined the patterns of tissue restoration 36 and 54 months after implantation of polyglycolic acid and poly-laevo-lactic acid screws in the distal femur of the rabbit.

After 36 months in the polyglycolic acid group the specimens showed no remaining polymer and loose connective tissue occupied 80% of the screw track. Tissue restoration remained poor at 54 months, the amounts of trabecular bone and haematopoietic elements being significantly lower than those in the intact control group. The amount of trabecular bone within the screw track at 54 months in the polyglycolic acid group was less than in the empty drill holes (p = 0.04). In the poly-laevo-lactic acid group, polymeric material was present in abundance after 54 months, occupying 60% of the cross-section of the core area of the screw track.

When using absorbable internal fixation implants we should recognise that the degradation of the devices will probably not be accompanied by the restoration of normal trabecular bone.