Advertisement for orthosearch.org.uk
Results 1 - 14 of 14
Results per page:
The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 1 | Pages 93 - 97
1 Jan 2012
Lee JH Lee J Park JW Shin YH

In patients with osteoporosis there is always a strong possibility that pedicle screws will loosen. This makes it difficult to select the appropriate osteoporotic patient for a spinal fusion. The purpose of this study was to determine the correlation between bone mineral density (BMD) and the magnitude of torque required to insert a pedicle screw. To accomplish this, 181 patients with degenerative disease of the lumbar spine were studied prospectively. Each underwent dual-energy x-ray absorptiometry (DEXA) and intra-operative measurement of the torque required to insert each pedicle screw. The levels of torque generated in patients with osteoporosis and osteopenia were significantly lower than those achieved in normal patients. Positive correlations were observed between BMD and T-value at the instrumented lumbar vertebrae, mean BMD and mean T-value of the lumbar vertebrae, and mean BMD and mean T-value of the proximal femur. The predictive torque (Nm) generated during pedicle screw insertion was [-0.127 + 1.62 × (BMD at the corresponding lumbar vertebrae)], as measured by linear regression analysis. The positive correlation between BMD and the maximum torque required to insert a pedicle screw suggests that pre-operative assessment of BMD may be useful in determining the ultimate strength of fixation of a device, as well as the number of levels that need to be fixed with pedicle screws in patients who are suspected of having osteoporosis


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXVI | Pages 87 - 87
1 Jun 2012
Pande R Ahuja S
Full Access

Introduction. Halo traction, either on bed or with an accompanying vest is used commonly in Spine surgery, in a variety of clinical situations. The pins are inserted into the skull in safe anatomic zones, using wrenches that are either pre-torqued or exhibit a torque gauge to allow measurable torque application. A torque of 6 – 8 inch pounds is considered ideal for optimal pin tightening. Lesser torques may hypothetically lead to pin loosening and pin track infections, while, excessive torques could lead to pin penetration through the skull. Aim. To test the accuracy and consistency of different torque wrenches used for Halo pin insertion, using a standardised calibration device. Methodology. Three different types of torque wrenches were tested, using the MTS Systems 858 Mini Bionix II calibration device at the School of Engineering laboratory in Cardiff. Each type had four samples. Three more samples of one type, which were already in use at the Spine unit were also tested, making a total sample size of fifteen. The calibration device had a declared average error of 0.5 %. Each torque wrench was tested twenty five times to a pre set value of 6 inch pounds (0.67790897 N-m), resulting in 375 independent observations. Data was recorded electronically and was analysed for error, percentage of error and variability for each device. Results. All wrenches, regardless of model or make, failed to deliver accurate torque at the pre set value on repeated testing. There were both negative and positive errors. The average torque delivered by all wrenches together at a pre set value of 0.67790897 N-m was 0.721337 (+/- 0.116919) N-m. The average percent error for individual wrenches ranged from 4 % to 34 %. When grouped by model, the average percent error (model specific) ranged from 5 % to 29 %. When assessed for consistency, the wrenches revealed a range of values over a minimum of 0.053303 N-m to a maximum of 0.846512 N-m. The variability of all wrenches of one model type was however similar, though not identical. The best performing model had an average variation over 0.165531 N-m while the value for the worst was 0.685794 N-m. Conclusion. Torque wrenches used to tighten Halo pins appear to be neither accurate nor consistent. They deliver torques that are either less than or more than their pre set levels. Different wrenches of one model displayed a similar pattern of variability. While this study does not seek to relate this lack of accuracy and consistency to the development of specific complications like loosening or penetration, it does suggest that extreme care is advisable while using torque wrenches to minimise clinical mishaps


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_6 | Pages 15 - 15
1 Feb 2016
Ertman H Szepietowski O Chiou S Strutton P
Full Access

Background:. We have recently shown, using transcranial magnetic stimulation (TMS) to assess voluntary activation (VA), that neural drive to back muscles is reduced in subjects with chronic low back pain. There is also evidence that central nervous system drive to abdominal muscles is altered in these subjects, however VA has not yet been assessed for these muscles in healthy subjects; this is the purpose of the present study. Methods:. Twenty one healthy subjects (10M:11F) participated. Electromyographic activity was recorded from back and abdominal muscles and flexor torque was measured using a dynamometer. Subjects performed a series of isometric voluntary contractions (10%–100% MVC) of rectus abdominis during which TMS was applied to the motor cortex. The resulting superimposed twitches (SIT) were measured and VA was derived. Results:. There was a linear relationship between voluntary torque (50–100% MVC) and SIT amplitude and between voluntary torque (50–100% MVC) and VA. VA at a target torque of 100% MVC was less than maximal (∼86%). Time-to-peak amplitude of SITs displayed a linear relationship with voluntary torque between 10%–100% MVC. Discussion:. This study has shown that it is possible to assess VA of abdominal muscles using TMS. Further, it appears that VA is submaximal during maximum voluntary contractions, similar to that observed in back muscles. This may reflect the function of trunk muscles in general, which are routinely used for maintenance of posture. Whether imbalances of abdominal and back muscle strength observed in low back pain are reflected in imbalances of neural drive to these muscles remains to be investigated


The Journal of Bone & Joint Surgery British Volume
Vol. 84-B, Issue 3 | Pages 387 - 391
1 Apr 2002
Sandén B Olerud C Petrén-Mallmin M Larsson S

We investigated the effects of hydroxyapatite (HA) coating on the purchase of pedicle screws. A total of 23 consecutive patients undergoing lumbar fusion was randomly assigned to one of three treatment groups. The first received uncoated stainless-steel screws, the second screws which were partly coated with HA, and the third screws which were fully coated. The insertion torque was recorded. After 11 to 16 months, 21 screws had been extracted. The extraction torque was recorded. Radiographs were taken to assess fusion and to detect loosening of the screws. At removal, the extraction torques exceeded the upper limit of the torque wrench (600 Ncm) for many HA-coated screws. The calculated mean extraction torque was 29 ± 36 Ncm for the uncoated group, 447 ± 114 Ncm for the partly-coated group and 574 ± 52 Ncm for the fully-coated group. There were significant differences between all three groups (p < 0.001). There were more radiolucent zones surrounding the uncoated screws than the HA-coated screws (p < 0.001). HA coating of pedicle screws resulted in improved fixation with reduced risk of loosening of the screws


Bone & Joint Research
Vol. 5, Issue 9 | Pages 419 - 426
1 Sep 2016
Leichtle CI Lorenz A Rothstock S Happel J Walter F Shiozawa T Leichtle UG

Objectives. Cement augmentation of pedicle screws could be used to improve screw stability, especially in osteoporotic vertebrae. However, little is known concerning the influence of different screw types and amount of cement applied. Therefore, the aim of this biomechanical in vitro study was to evaluate the effect of cement augmentation on the screw pull-out force in osteoporotic vertebrae, comparing different pedicle screws (solid and fenestrated) and cement volumes (0 mL, 1 mL or 3 mL). Materials and Methods. A total of 54 osteoporotic human cadaver thoracic and lumbar vertebrae were instrumented with pedicle screws (uncemented, solid cemented or fenestrated cemented) and augmented with high-viscosity PMMA cement (0 mL, 1 mL or 3 mL). The insertion torque and bone mineral density were determined. Radiographs and CT scans were undertaken to evaluate cement distribution and cement leakage. Pull-out testing was performed with a material testing machine to measure failure load and stiffness. The paired t-test was used to compare the two screws within each vertebra. Results. Mean failure load was significantly greater for fenestrated cemented screws (+622 N; p ⩽ 0.001) and solid cemented screws (+460 N; p ⩽ 0.001) than for uncemented screws. There was no significant difference between the solid and fenestrated cemented screws (p = 0.5). In the lower thoracic vertebrae, 1 mL cement was enough to significantly increase failure load, while 3 mL led to further significant improvement in the upper thoracic, lower thoracic and lumbar regions. Conclusion. Conventional, solid pedicle screws augmented with high-viscosity cement provided comparable screw stability in pull-out testing to that of sophisticated and more expensive fenestrated screws. In terms of cement volume, we recommend the use of at least 1 mL in the thoracic and 3 mL in the lumbar spine. Cite this article: C. I. Leichtle, A. Lorenz, S. Rothstock, J. Happel, F. Walter, T. Shiozawa, U. G. Leichtle. Pull-out strength of cemented solid versus fenestrated pedicle screws in osteoporotic vertebrae. Bone Joint Res 2016;5:419–426


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_X | Pages 101 - 101
1 Apr 2012
Moghadas P Hukins D Shepherd D Mahomed A
Full Access

School of Mechanical Engineering, University of Birmingham, Birmingham, UK. This study investigated the effects on friction of changing the dimensions of a ball-and-socket Total Disc Arthroplasty (TDA). A generic ball-and-socket model was designed and manufactured based on the dimensions and geometry of a metal-on-metal Maverick (Medtronic, Minneapolis, USA) device. Keeping the radial clearance similar to the Maverick, the ball and socket dimensions varied between 10 to 16 mm and 10.015 to 16.015 mm, respectively, in order to enable the comparison between different dimensions. The implants were made out of Cobalt Chrome Molybdenum alloy, with a surface roughness of 0.05 μm. A Bose spine simulator (Bose Corporation, ElectroForce Systems Group, Minnesota, USA) was used to apply an axial compressive force to the TDA. Axial rotation of ±2° was then applied at various frequencies and the resulting frictional torque measured. The tests were performed under an axial load of 50, 600 and 1200 N and frequencies of 0.5, 1.0, 1.5 and 2.0 Hz, for four different samples of radii 10, 12, 14 and 16 mm (48 combinations in total). The results showed variation of frictional torque in different frequencies for all four samples under constant axial load. It was observed that the frictional torque had the lowest value for the implant with ball radius of 16mm. It might be concluded that the implant with larger ball radius may create less friction and hence offer a longer life


Bone & Joint Open
Vol. 5, Issue 3 | Pages 243 - 251
25 Mar 2024
Wan HS Wong DLL To CS Meng N Zhang T Cheung JPY

Aims

This systematic review aims to identify 3D predictors derived from biplanar reconstruction, and to describe current methods for improving curve prediction in patients with mild adolescent idiopathic scoliosis.

Methods

A comprehensive search was conducted by three independent investigators on MEDLINE, PubMed, Web of Science, and Cochrane Library. Search terms included “adolescent idiopathic scoliosis”,“3D”, and “progression”. The inclusion and exclusion criteria were carefully defined to include clinical studies. Risk of bias was assessed with the Quality in Prognostic Studies tool (QUIPS) and Appraisal tool for Cross-Sectional Studies (AXIS), and level of evidence for each predictor was rated with the Grading of Recommendations, Assessment, Development, and Evaluations (GRADE) approach. In all, 915 publications were identified, with 377 articles subjected to full-text screening; overall, 31 articles were included.


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_2 | Pages 22 - 22
1 Feb 2015
Chiou S Koutsos E Georgiou P Strutton P
Full Access

Purposes of the study and background. Characteristics of muscle activity, represented by surface electromyography (EMG), have shown differences between patients with low back pain and healthy adults; how they relate to functional/clinical scales remains unclear. The purpose of the current study was to examine the correlation between frequency characteristics of EMG and patients' self-rated score of disability using continuous wavelet transform (CWT) analysis. Methods and Results. Fifteen patients with chronic mechanical low back pain (LBP) and 10 healthy adults were recruited. Patients completed the Roland-Morris Disability Questionnaire (RMDQ) and bilateral EMG activity was obtained from erector spinae at vertebral level L4 and T12. Subjects performed 3 brief maximal voluntary contractions (MVCs) of the back extensors and the torque was measured using a dynamometer. CWT was applied to the EMG signals of each muscle in a 200ms window centred around the peak torque obtained during the MVCs. The ratio (low/high frequencies) of the energy, the peak energy, and the frequency of the peak energy were calculated for each muscle and then averaged and correlated with the individual's RMDQ score. Patients had significantly lower peak power than the controls (p=0.04). Additionally, RMDQ positively correlated to the average ratio of energy (rho=0.71; p=0.01), meaning higher disability corresponded to a dominant distribution of energy in the lower-frequencies; but negatively correlated to the average frequency of peak energy (rho=-0.61; p=0.035), meaning lower frequency of peak energy corresponded to higher levels of disability. Conclusion. The current findings support anatomical evidence of changes in muscle fibre composition of back muscles in subjects with chronic LBP. Conflicts of interest: No conflicts of interest. Sources of funding: No funding obtained


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_15 | Pages 14 - 14
1 Oct 2014
Pilling R Ahmed E
Full Access

The purpose of this study is to investigate what effect cross links have on scoliosis constructs and whether cross links may be used instead of pedicle screws at the apex of the deformity. The rotational stiffness of six different construct designs was investigated on scoliotic sawbone models with zero, one or two cross links. In three of the constructs the screws at the apex were removed. Testing was performed to an average torque of 3Nm and ration was detected using electromagnetic motion tracking system. The stiffness in axial rotation of all constructs increased with the number of cross links, however the difference was not statistically significant. In constructs with apical screws the stiffness increased by 3.01% and 12.9% for one and two cross links respectively. In constructs without apical screws the increase was 1.64% and 14.3% for one and two cross links respectively. The total stiffness of the construct increased with the addition of apical screws by 20%, 21.7% and 18.8% for zero, one and two cross links respectively. This increase was statistically significant using a paired t-test (p= 0.01142). On the basis of these results we conclude that the use of cross links in scoliosis correction surgery is not necessary. Pedicle screws positioned at the apex of the scoliosis curve statistically increase the stiffness in axial rotation and are therefore necessary to promote an environment suitable for bony fusion


The Bone & Joint Journal
Vol. 98-B, Issue 8 | Pages 1099 - 1105
1 Aug 2016
Weiser L Dreimann M Huber G Sellenschloh K Püschel K Morlock MM Rueger JM Lehmann W

Aims

Loosening of pedicle screws is a major complication of posterior spinal stabilisation, especially in the osteoporotic spine. Our aim was to evaluate the effect of cement augmentation compared with extended dorsal instrumentation on the stability of posterior spinal fixation.

Materials and Methods

A total of 12 osteoporotic human cadaveric spines (T11-L3) were randomised by bone mineral density into two groups and instrumented with pedicle screws: group I (SHORT) separated T12 or L2 and group II (EXTENDED) specimen consisting of T11/12 to L2/3. Screws were augmented with cement unilaterally in each vertebra. Fatigue testing was performed using a cranial-caudal sinusoidal, cyclic (1.0 Hz) load with stepwise increasing peak force.


The Bone & Joint Journal
Vol. 99-B, Issue 8 | Pages 1080 - 1087
1 Aug 2017
Tsirikos AI Mataliotakis G Bounakis N

Aims

We present the results of correcting a double or triple curve adolescent idiopathic scoliosis using a convex segmental pedicle screw technique.

Patients and Methods

We reviewed 191 patients with a mean age at surgery of 15 years (11 to 23.3). Pedicle screws were placed at the convexity of each curve. Concave screws were inserted at one or two cephalad levels and two caudal levels. The mean operating time was 183 minutes (132 to 276) and the mean blood loss 0.22% of the total blood volume (0.08% to 0.4%). Multimodal monitoring remained stable throughout the operation. The mean hospital stay was 6.8 days (5 to 15).


The Bone & Joint Journal
Vol. 98-B, Issue 1 | Pages 88 - 96
1 Jan 2016
Tsirikos AI Sud A McGurk SM

Aims

We reviewed 34 consecutive patients (18 female-16 male) with isthmic spondylolysis and grade I to II lumbosacral spondylolisthesis who underwent in situ posterolateral arthodesis between the L5 transverse processes and the sacral ala with the use of iliac crest autograft. Ten patients had an associated scoliosis which required surgical correction at a later stage only in two patients with idiopathic curves unrelated to the spondylolisthesis.

Methods

No patient underwent spinal decompression or instrumentation placement. Mean surgical time was 1.5 hours (1 to 1.8) and intra-operative blood loss 200 ml (150 to 340). There was one wound infection treated with antibiotics but no other complication. Radiological assessment included standing posteroanterior and lateral, Ferguson and lateral flexion/extension views, as well as CT scans.


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 5 | Pages 687 - 691
1 May 2005
Aihara T Takahashi K Ogasawara A Itadera E Ono Y Moriya H

We studied 52 patients, each with a lumbosacral transitional vertebra. Using MRI we found that the lumbar discs immediately above the transitional vertebra were significantly more degenerative and those between the transitional vertebrae and the sacrum were significantly less degenerative compared with discs at other levels. We also performed an anatomical study using 70 cadavers. We found that the iliolumbar ligament at the level immediately above the transitional vertebra was thinner and weaker than it was in cadavers without a lumbosacral transitional vertebra.

Instability of the vertebral segment above the transitional vertebra because of a weak iliolumbar ligament could lead to subsequent disc degeneration which may occur earlier than at other disc levels. Some stability between the transitional vertebra and the sacrum could be preserved by the formation of either an articulation or by bony union between the vertebra and the sacrum through its transverse process. This may protect the disc from further degeneration in the long term.


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 9 | Pages 1183 - 1186
1 Sep 2006
Quinlan JF Duke D Eustace S

Bertolotti’s syndrome is characterised by anomalous enlargement of the transverse process(es) of the most caudal lumbar vertebra which may articulate or fuse with the sacrum or ilium and cause isolated L4/5 disc disease.

We analysed the elective MR scans of the lumbosacral spine of 769 consecutive patients with low back pain taken between July 2003 and November 2004. Of these 568 showed disc degeneration. Bertolotti’s syndrome was present in 35 patients with a mean age of 32.7 years (15 to 60). This was a younger age than that of patients with multiple disc degeneration, single-level disease and isolated disc degeneration at the L4/5 level (p ≤ 0.05). The overall incidence of Bertolotti’s syndrome in our study was 4.6% (35 of 769). It was present in 11.4% (20 patients) of the under-30 age group.

Our findings suggest that Bertolotti’s syndrome must form part of a list of differential diagnoses in the investigation of low back pain in young people.