Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_9 | Pages 70 - 70
1 Oct 2020
Staats K Sosa BR Kuyl E Niu Y Suhardi VJ Turajane K Windhager R Greenblatt MB Ivashkiv L Bostrom MP Yang X
Full Access

Introduction. Initial post-operative implant instability leads to impaired osseointegration, one of the most common reasons for aseptic loosening and revision surgery. In this study, we developed a novel murine model of implant instability and demonstrated the anabolic effect of immediate and delayed intermittent Parathyroid Hormone (iPTH) treatment in the setting of instability-induced osseointegration failure. Methods. 3D-printed titanium implants were inserted in an oversized drill-hole in the tibia of C57Bl/6 mice (n=54). After implantation, the mice were randomly divided in 3 treatment groups (control: PBS-vehicle; iPTH; delayed iPTH). Radiographic analysis was performed to confirm signs of implant loosening. Peri-implant tissue formation was assessed through histology. Osseointegration was assessed through µCT and biomechanical pullout testing. Results. Immediate iPTH treatment reduced radiolucencies and induced a distinct pedestal sign distal to the implant stem (white arrow Fig 1A). The PBS treated mice had fibrous tissue implant encapsulation, whereas new mineralized tissue and no fibrous tissue was observed with immediate iPTH treatment (Fig 1E). Delayed iPTH treatment was also able to exhibit significant peri-implant bone mineralization, osteoblasts, angiogenesis, and a reduction of fibrous tissue (Fig 2A-B). iPTH treatment increased the force required to pull out the implant significantly from 8.41 ± 8.15N in the PBS group to 21.49 ± 10.45N and 23.68 ± 8.99N, in the immediate and delayed iPTH treatment groups, respectively (Fig 2D). PBS vehicle resulted in a bone volume/trabecular volume (BV/TV) of 0.23 ± 0.03, while immediate and delayed iPTH treatment increased BV/TV significantly to 0.46 ± 0.07 and 0.34 ± 0.10, respectively (Fig 2E). Conclusion. Immediate iPTH treatment prevents peri-implant fibrous tissue formation and enhances peri-implant bone formation in our murine model of mechanical instability. Delayed iPTH treatment was able to resolve the peri-implant fibrous tissue and stimulate bone formation. This study potentially addresses a leading cause of aseptic loosening by demonstrating that initial implant instability can be rescued by iPTH even with delayed start of treatment. For any figures or tables, please contact authors directly


The Bone & Joint Journal
Vol. 101-B, Issue 7_Supple_C | Pages 108 - 114
1 Jul 2019
Ji G Xu R Niu Y Li N Ivashkiv L Bostrom MPG Greenblatt MB Yang X

Aims

It is increasingly appreciated that coordinated regulation of angiogenesis and osteogenesis is needed for bone formation. How this regulation is achieved during peri-implant bone healing, such as osseointegration, is largely unclear. This study examined the relationship between angiogenesis and osteogenesis in a unique model of osseointegration of a mouse tibial implant by pharmacologically blocking the vascular endothelial growth factor (VEGF) pathway.

Materials and Methods

An implant was inserted into the right tibia of 16-week-old female C57BL/6 mice (n = 38). Mice received anti-VEGF receptor-1 (VEGFR-1) antibody (25 mg/kg) and VEGF receptor-2 (VEGFR-2) antibody (25 mg/kg; n = 19) or an isotype control antibody (n = 19). Flow cytometric (n = 4/group) and immunofluorescent (n = 3/group) analyses were performed at two weeks post-implantation to detect the distribution and density of CD31hiEMCNhi endothelium. RNA sequencing analysis was performed using sorted CD31hiEMCNhi endothelial cells (n = 2/group). Osteoblast lineage cells expressing osterix (OSX) and osteopontin (OPN) were also detected with immunofluorescence. Mechanical pull-out testing (n = 12/group) was used at four weeks post-implantation to determine the strength of the bone-implant interface. After pull-out testing, the tissue attached to the implant surface was harvested. Whole mount immunofluorescent staining of OSX and OPN was performed to determine the amount of osteoblast lineage cells.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_IX | Pages 77 - 77
1 Mar 2012
James AR Dean B Moore E Whitwell D Price A Gibbons C
Full Access

Aim. A case series with functional and radiographic outcomes, of modular endoprosthetic distal femoral replacement in complex cases of periprosthetic fracture. Method. Sixteen cases were identified of endoprosthetic replacement (EPR) from the bone and soft tissue cancer implant registry. A retrospective review was undertaken. Results. There were 11 periprosthetic fractures of total knee arthroplasty, 3 revision arthroplasty cases, and 3 cases of distal femoral fracture. Of which four were complicated by infection. AKSS scores ranged from 62-100, average 82, with 6 month minimum follow up. There were two post operative infections, both successfully treated. One femoral component required exchange for aseptic loosening at two years. Conclusion. EPR is an effective surgical procedure for complex cases with a demonstrable good functional outcome