Advertisement for orthosearch.org.uk
Results 1 - 5 of 5
Results per page:
The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 5 | Pages 565 - 576
1 May 2009
Getgood A Brooks R Fortier L Rushton N

Articular cartilage repair remains a challenge to surgeons and basic scientists. The field of tissue engineering allows the simultaneous use of material scaffolds, cells and signalling molecules to attempt to modulate the regenerative tissue. This review summarises the research that has been undertaken to date using this approach, with a particular emphasis on those techniques that have been introduced into clinical practice, via in vitro and preclinical studies


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 7 | Pages 841 - 851
1 Jul 2006
Lee EH Hui JHP


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 4 | Pages 427 - 434
1 Apr 2011
Griffin M Iqbal SA Bayat A

Failure of bone repair is a challenging problem in the management of fractures. There is a limited supply of autologous bone grafts for treating nonunions, with associated morbidity after harvesting. There is need for a better source of cells for repair. Mesenchymal stem cells (MSCs) hold promise for healing of bone because of their capacity to differentiate into osteoblasts and their availability from a wide variety of sources. Our review aims to evaluate the available clinical evidence and recent progress in strategies which attempt to use autologous and heterologous MSCs in clinical practice, including genetically-modified MSCs and those grown on scaffolds. We have compared various procedures for isolating and expanding a sufficient number of MSCs for use in a clinical setting.

There are now a number of clinical studies which have shown that implantation of MSCs is an effective, safe and durable method for aiding the repair and regeneration of bone.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 11 | Pages 1413 - 1420
1 Nov 2007
FitzGerald J Fawcett J

The subject of central nervous system damage includes a wide variety of problems, from the slow selective ‘picking off’ of characteristic sub-populations of neurons typical of neurodegenerative diseases, to the wholesale destruction of areas of brain and spinal cord seen in traumatic injury and stroke. Experimental repair strategies are diverse and the type of pathology dictates which approach will be appropriate. Damage may be to grey matter (loss of neurons), white matter (cutting of axons, leaving neurons otherwise intact, at least initially) or both. This review will consider four possible forms of treatment for repair of the human central nervous system.


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 10 | Pages 1309 - 1319
1 Oct 2005
Hall S