INTRODUCTION:. Proper tibial rotation has been cited as an important prerequisite to optimal total knee replacement. The most commonly recognized rotational landmark is the medial 1/3. rd. of the
Safely obtaining adequate exposure is an integral step in successfully performing a Total Knee Arthroplasty. In this study, we look at approaching the valgus knee through a lateral arthrotomy and
We identified 26
Patients with recurrent patella instability, who have an abnormal patellofemoral alignment (patella height or tibial tubercle-trochlear groove (TTTG) distance), benefit from
Aim. We report the results of a modified Fulkerson technique of antero-medialisation of the
INTRODUCTION. Conventional surgical exposures are usually inadequate for 2-stage revision knee replacement ofinfected implants. Reduced range of motion, extensor mechanism stiffness, peripatellar contracture and soft tissue scarring make patellar eversion difficult and forced eversion places the integrity of the extensor mechanism at risk. On the contrary, a wide exposure is fundamental to allow complete cement spacer removal, soft tissue balancing, management of bone loss and reimplantation without damaging periarticular soft tissues. OBJECTIVES. To compare the long-term clinical, functional and radiographic results and the reinfection rate of the quadriceps snip approach and the
Background. Accurate implant positioning is of supreme importance in total knee replacement (TKR). The rotational profile of the femoral and tibial components can affect outcomes, and the aim is to achieve coronal conformity with parallelism between the medio-lateral axes of the femur and tibia. Aims. The aim of this study is to determine the accuracy of implant rotation in total knee replacement. Methods. Intra-operatively, the trans-epicondylar axis of the femur (TEA) and Whiteside's line were used as the reference points, aiming to externally rotate the femoral component by 1 degree. The medial third of the tibial tuberosity was used as the anatomical reference point, aiming to reproduce the rotation of the native tibia. Pre-and post-operative CT scans were reviewed. The difference in femoral rotation was calculated by determining the femoral posterior condylar axis (PCA) of the native femur pre-operatively and the implant post-operatively. Tibial rotational difference was calculated between the native tibial posterior condylar axis and tibial baseplate. Results. Pre and post-operative CT scans of 41 knees in 31 patients were analysed. All surgeries were carried out by a single surgeon using the same implant. The mean difference in rotation of the femur post-operatively was 1.2 degrees external rotation (ER), range −4.7 to 6.9 degrees ER. 83% of femoral components were within 3 degrees of the target rotation. Mean difference in tibial rotation was −3.8 degrees ER, range −11.1 to 12.4 ER. Only 39% of tibial components were within 3 degrees of the target rotation. A line perpendicular to the midpoint of the tibial PCA was actually medial to the
Introduction. Post-operative clinical outcomes of TKA are dependent on a multitude of surgical and patient-specific factors. Malrotation of the femoral and/or tibial component is associated with pain, accelerated wear of the tibial insert, joint instability, and unfavorable patellar tracking and dislocation. Using the transepicondylar axis to guide implantation of the femoral component is considered to be an accurate anatomical reference and is widely used. However, no gold standard currently exists with respect to ensuring optimal rotation of the tibial tray. Literature has suggested that implantation methods, which reference the
Achievement of adequate exposure in revision total knee arthroplasty is critical as it reduces the surgical time, enhances the ability for both component removal and reconstruction, and avoids devastating complications such as extensor mechanism disruption. However, this can be challenging as prior multiple surgeries and limited mobility contribute to a loss of tissue elasticity, thickened capsular envelope, and peri-articular soft tissue adhesions. A thorough pre-operative assessment of a patient's past surgical history, comorbidities, pre-operative radiographs (i.e. the presence of severe patella baja), and physical examination including range of motion, prior incisions, and soft tissue pliability are useful in determining the appropriate surgical techniques necessary for a successful revision. A systematic approach to the ankylosed knee is critical. Most techniques are geared towards mobilization of the extensor mechanism to safely displace the patella for component exposure. The initial exposure should consist of a long skin incision, a subperiosteal medial release, and debridement of suprapatellar, medial, and lateral adhesions to the femoral condyles. A lateral capsular release can prove helpful in further mobilization of the extensor mechanism. When performing a medial parapatellar arthrotomy it's important to keep in mind further extensile exposure techniques that may be required. For example, the arthrotomy should not extend proximally into the vastus intermedius or rectus femoris in the event that a quadriceps snip technique is to be used as this can compromise the ability to repair this exposure. Despite a large exposure and release of adhesions, sometimes the extensor mechanism remains at risk of rupture and adequate visualization cannot be obtained. In this event, extensile exposures such as a quadriceps snip, quadriceps turndown or
Recurrent patellar instability is a common problem and there are multiple demographic and pathoanatomic risk factors that predispose patients to dislocating their patella. The most common of these is trochlear dysplasia. In cases of severe trochlear dysplasia associated with patellar instability, a sulcus deepening trochleoplasty combined with a medial patellofemoral ligament reconstruction (MPFLR) may be indicated. Unaddressed trochlear pathology has been associated with failure and poor post-operative outcomes after stabilization. The purpose of this study is to report the clinical outcome of patients having undergone a trochleoplasty and MPFLR for recurrent lateral patellofemoral instability in the setting of high-grade trochlear dysplasia at a mean of 2 years follow-up. A prospectively collected database was used to identify 46 patients (14 bilateral) who underwent a combined primary MPFLR and trochleoplasty for recurrent patellar instability with high-grade trochlear dysplasia between August 2013 and July 2021. A single surgeon performed a thin flap trochleoplasty using a lateral para-patellar approach with lateral retinaculum lengthening in all 60 cases. A
Following a careful in-depth preoperative plan for revision TKA, the first surgical step is adequate exposure. It is crucial to plan your exposure for all contingencies. Prior incisions have tremendous implications and care must be taken to consider their impact. Due to the medially based vascular supply to the skin and superficial tissues about the knee, consideration for use of the most LATERAL incision should be made. It is essential to avoid the development of flaps which may compromise the skin and soft tissue which can have profound implications. Exposure options can be broken down into either PROXIMALLY based techniques or DISTALLY based options. The proximal based techniques involve a medial parapatella arthrotomy followed by the establishment of medial and lateral gutters. An assessment of the ability to evert or subluxate the patella should be made. Care must be taken to protect the insertion of the patella tendon into the
Like all surgery, if you can see it, you can usually get the job done. This is especially true for extracting well-fixed components, as iatrogenic bone loss is a serious consideration regarding the reconstruction challenge. While reasons for revision are varied, several general principles are useful to consider during the pre and peri-operative course. Pre-operatively, forewarned is forearmed. Certain factors pre-operatively can suggest the degree of operative difficulty regarding exposure. Revisions for stiffness obviously would suggest difficulty with exposure. Revisions in knees with patellar baja are almost always challenging as the patella is difficult to evert. When revising infected knees, an exuberant synovial response can result in beefy, friable synovium that has a volume effect with decreased tissue compliance. Further, the hyperemic friable tissue bleeds easily, even with tourniquet, and is difficult to anticoagulate. Peri-operatively, the general principles to consider are as follows: 1) Don't rush exposure. Good exposure is the result of a series of deliberate and sequential steps that safely reduce tissue volume and improvement in tissue compliance. These steps include in almost all cases: a. Extend the incision as necessary, there is no call for minimally invasive revision knee surgery; b. Tenolysis of the patellar tendon; c. Clearing of the medial and lateral gutter; d. Clearing of the flexion space; e. Clearing of quadriceps adhesions. 2) Protect the extensor mechanism, above all else. Carefully monitor the insertion of the patellar tendon when beginning to flex the knee. If an avulsion begins, back off flexion and spend more time on clearing of scar tissue, as above. If still unsuccessful, then extensile exposure should be considered, such as a quadriceps snip. Be especially careful when osteolysis is present around the
Exposure for revision knee requires using the previous incision, employing the “quad snip”, the “Banana Peel”, or the tubercle osteotomy. The “quad snip” is a 45-degree incision of the proximal extensor mechanism that helps protect the distal insertion on the tubercle. The “banana peel,” is my exposure of choice and has been used extensively for revision total knee arthroplasty (TKA) for more than 20 years in my community. We retrospectively reviewed use of this technique in a cohort of 100 consecutive patients who underwent tibial-femoral stemmed revision TKA. The technique involves peeling the patella tendon as a sleeve off the tibia, leaving the extensor mechanism intact with a lateral hinge of soft tissue. A quadriceps “snip” must be done proximally to avoid excessive tension. No patient has ever reported disruption of the extensor mechanism or decreased ability to extend the operative knee. With a mean Knee Society score of 176 (range, 95–200). Post-operative motion was 106 degrees. No patient reported pain over the
Introduction. Optimized tibial tray rotation during a total knee replacement (TKR) is critical for tibiofemoral congruency through full range of motion, as it affects soft tissue tension, stability and patellar tracking. Surgeons commonly reference the
Introduction:. Proper rotational alignment of the tibial component is a critical factor in the outcome of total knee arthroplasty (TKA), and misalignment has been implicated as a major contributing factor to several mechanisms of TKA failure. In this study we examine the relationship between bony and soft tissue tibial landmarks against the knee motion axis (plane that best approximates tibiofemoral motion through range of motion). Methods:. The kinematic motions of 16 fresh-frozen lower limb specimens were analyzed in simulated lunging and squatting. All the tendons of the quadriceps and hamstrings were independently loaded to simulate a lunging or squatting maneuver. All specimens underwent CT scan and the 3D position of the knee was virtually reconstructed. Ten anatomic axes were identified using both the intact tibia and the resected tibial surface. Two axes were normal vectors to either the medial-lateral plateau center or the posterior tibial surface. Seven axes were defined between the
The battle of revision TKA is won or lost with safe, effective, and minimally bony-destructive implant removal, protecting all ligamentous stabilisers of the knee and, most importantly, the extensor mechanism. For exposure, incisions should be long and generous to allow adequate access. A standard medial parapatellar capsular arthrotomy is preferred. A synovectomy is performed followed by debridement of all scar tissue, especially in the medial and lateral gutters. All peripatellar scar tissue is excised followed by release of scar tissue within the patellar tendon, allowing for displacement or everting of the patella. As patellar tendon avulsion at any time of knee surgery yields disastrous results, the surgeon should be continuously evaluating the patellar tendon integrity, especially while displacing/everting the patella and bringing the knee into flexion. If displacement/eversion is difficult, consider rectis-snip, V-Y quadricepsplasty, or
After over 4 decades of experience with total knee arthroplasty, many lessons have been learned regarding surgical technique. These include exposure issues, alignment methods, bone preparation, correction of deformity, implantation techniques and wound closure. Where is the proper placement of the skin incision relative to the
Introduction. Poor clinical outcomes following total knee arthroplasty (TKA) can be related to improper alignment of the components. The main challenge is the variability in biomechanical references, especially in cases of severe deformity or dysplasia, and in determining the surgical landmarks intraoperatively. An intraoperative imaging tool can be very useful to assess the alignments when there is still a chance for correction. We investigated, on cadaveric specimens, the accuracy of using iso-centric (ISO-C) imaging (that reconstructs 3D from multiple 2D fluoroscopic images) for this purpose. Methods. Six fresh frozen cadaveric knees were implanted with a standard TKA system and imaged using an ISO-C 3D C-arm (Arcadis Orbic ISO-C). Each knee was scanned two times with the Iso-C scanner and with appropriate image settings to capture the transepicondylar axis (TEA) and the
“The shortest distance between two points is a straight line.” This explains many cases of patellar maltracking, when the patellar track is visualised in three dimensions. The three-dimensional view means that rotation of the tibia and femur during flexion and extension, as well as rotational positioning of the tibial and femoral components are extremely important. As the extensor is loaded, the patella tends to “center” itself between the patellar tendon and the quadriceps muscle. The patella is most likely to track in the trochlear groove IF THE GROOVE is situated where the patella is driven by the extensor mechanism: along the shortest track from origin to insertion. Attempts to constrain the patella in the trochlear groove, if it lies outside that track, are usually unsuccessful. Physiologic mechanisms for tibial-femoral rotation that benefit patellar tracking (“screw home” and “asymmetric femoral roll-back”) are not generally reproduced. Practical Point. A patellofemoral radiograph that shows the
MPFL reconstruction has demonstrated a very high success rate with improved patella stability, physical function, and patient-reported outcomes. However technical error and a lack of consideration of anatomic risk factors have been shown to contribute to failure after MPFL reconstruction. Previous research has also reported a complication rate of 26% following surgery. The purposes of this study were to determine the re-dislocation rate, type and number of complications, and most common additional surgical procedures following MPFL reconstruction. Patients with symptomatic recurrent patellofemoral instability underwent an MPFL reconstruction (n = 268) and were assessed with a mean follow-up of 31.5 months (minimally 24-months). Concomitant procedures were performed in addition to the MPFL reconstruction in order to address significant anatomic or biomechanical characteristics. Failure of the patellofemoral stabilization procedure was defined as post-operative re-dislocation of the patella. Rates of complications and re-procedures were assessed for all patients. The re-dislocation rate following MPFL reconstruction was 5.6% (15/268). There were no patella fractures. A total of 49/268 patients (18.3%) returned to the operating room for additional procedures following surgery. The most common reason for additonal surgery was removal of symptomatic