Aims. Unicompartmental knee arthroplasty (UKA) has become a popular method of treating knee localized osteoarthritis (OA). Additionally, the posterior cruciate ligament (PCL) is essential to maintaining the physiological kinematics and functions of the knee joint. Considering these factors, the purpose of this study was to investigate the biomechanical effects on PCL-deficient knees in medial UKA. Methods. Computational simulations of five subject-specific models were performed for intact and PCL-deficient UKA with
A functional anterior cruciate ligament (ACL) or posterior cruciate ligament (PCL) has been assumed to be required for patients undergoing unicompartmental knee arthroplasty (UKA). However, this assumption has not been thoroughly tested. Therefore, this study aimed to assess the biomechanical effects exerted by cruciate ligament-deficient knees with medial UKAs regarding different posterior tibial slopes. ACL- or PCL-deficient models with posterior tibial slopes of 1°, 3°, 5°, 7°, and 9° were developed and compared to intact models. The kinematics and contact stresses on the tibiofemoral joint were evaluated under gait cycle loading conditions.Aims
Methods
Introduction. Unicompartmental knee arthroplasty (UKA) in patients with isolated medial osteoarthritis of the knee is nowadays a standard procedure with good results, especially with the minimally-invasive approach. However, the survival rate of the unicompartmental knee prostheses is inferior to that of total knee prostheses. Therefore, further studying of UKA is still necessary. In most mobile bearing designs the femoral component has a spherical surface and therefore its positioning is not crucial. The role of the
Introduction.
Purpose of the study: The
Introductions. In cruciate-retaining total knee arthroplasty (TKA), among many factors influencing post-operative outcome, increasing the
Aim. To investigate the effect of the eight plate position in sagittal plane on
High tibial osteotomies are commonly performed for varus/valgus malalignment of the knee. In the past we have been well aware that a high tibial osteotomy corrects the coronal plane but we did not consider changes of the
To determine the effect of altering
Introduction High tibial osteotomies (HTO) are commonly performed for either varus or valgus malalignment of the knee. In the past we have been well aware that HTO corrects the coronal plane of the knee, but we did not consider changes of the
Purpose: The study objective was to measure ‘posterior condylar offset’ (PCO), and
The purpose of this study was to evaluate the effect of decreasing
The Columbus® knee system was designed as a standard knee implant that allows high flexion without the need for additional bone resection. The aim of this retrospective study was to investigate the correlation between the maximum flexion achieved at five years and the slope of the tibial component. The hypothesis was that increased slope would give increased flexion. The study design was a retrospective cohort study at a single centre. The inclusion criterion was having had a navigated cemented Columbus primary TKA implanted between March 2005 and December 2006 using the image free OrthoPilot® navigation system (Aesculap, Tuttlingen, Germany) in our institution. Follow-up had been carried out at review clinics by an independent arthroplasty team. Patient-related data had been recorded either in case notes, the departmental proprietary database or as radiographic images. In addition to demographics, five-year follow-up range of motion (ROM) was collected. All available radiographs on the national Picture Archiving and Communication System (Eastman Kodak Company, 10.1_SP1, 2006), whether taken at our institution or at the patient's local hospital, were analysed by a trainee orthopaedic surgeon (NCS) who was independent of the patients' care. Component position according to the Knee Society TKA scoring system was determined from the five-year review lateral x-ray. The
Introduction The purpose of this study was to detect the effect of
Introduction: Clinical follow-up studies of total knee arthroplasty (TKA) reveal good results. However, the range of flexion of the knee after TKA remains limited in most cases. The most important factors impacting this range are the length of the quadriceps, the capsular tightness, the
The purpose of this study was initially to examine the effect of
High tibial osteotomy is commonly performed for varus/ valgus misalignment of the knee. Altering the sagittal plane can affect the forces of the cruciate ligaments and influence stability. This retrospective study looked at the alteration of the
Purpose:
Objectives. Posterior condylar offset (PCO) and posterior tibial slope (PTS) are critical factors in total knee arthroplasty (TKA). A computational simulation was performed to evaluate the biomechanical effect of PCO and PTS on cruciate retaining TKA. Methods. We generated a subject-specific computational model followed by the development of ± 1 mm, ± 2 mm and ± 3 mm PCO models in the posterior direction, and -3°, 0°, 3° and 6° PTS models with each of the PCO models. Using a validated finite element (FE) model, we investigated the influence of the changes in PCO and PTS on the contact stress in the patellar button and the forces on the posterior cruciate ligament (PCL), patellar tendon and quadriceps muscles under the deep knee-bend loading conditions. Results. Contact stress on the patellar button increased and decreased as PCO translated to the anterior and posterior directions, respectively. In addition, contact stress on the patellar button decreased as PTS increased. These trends were consistent in the FE models with altered PCO. Higher quadriceps muscle and patellar tendon force are required as PCO translated in the anterior direction with an equivalent flexion angle. However, as PTS increased, quadriceps muscle and patellar tendon force reduced in each PCO condition. The forces exerted on the PCL increased as PCO translated to the posterior direction and decreased as PTS increased. Conclusion. The change in PCO alternatively provided positive and negative biomechanical effects, but it led to a reduction in a negative biomechanical effect as PTS increased. Cite this article: K-T. Kang, Y-G. Koh, J. Son, O-R. Kwon, J-S. Lee, S. K. Kwon. A computational simulation study to determine the biomechanical influence of posterior condylar offset and
Background: The determinants of range of movement following knee replacement may be surgically modifiable (tibial slope, posterior condylar offset or the level of the joint line) or non modifiable (pre-operative range of movement, sex or BMI). We aimed to quantify the influence of these factors upon restoration of flexion in the arthritic knee following knee replacement. Methods: Patients were included from two prospective trials for three different designs of knee replacement. Range of movement was recorded using a standard measuring technique preoperatively and 12 months after surgery. Radiological measurement was done by an independent observer and included the preoperative posterior condylar offset and the postoperative