Abstract. Introduction. Long term survivorship in Total Knee Arthroplasty is significantly dependent on prosthesis alignment. The aim of this study was to determine, compare and analyse the coronal alignment of the
Introduction. Today TKR is considered one of the most successful operative procedures in orthopedic surgery. Nevertheless, failure rates of 2 – 10% depending on the length of the study and the design are still reported. This provides evidence for further development in knee arthroplasty. Particularly the oxide ceramics used now in THA show major advantages due to their excellent tribological properties, their significantly reduced third-body wear as well as their high corrosion resistance. A further advantage of ceramic materials is their potential use in patients with metal allergy. Metallic wear induces immunological reactions resulting in hypersensitivity, pain, osteolysis and implant loosening. The purpose of our study was to examine the safety of the
The biomechanics of the patellofemoral joint can become disturbed during total knee replacement by alterations induced by the position and shape of the different prosthetic components. The role of the patella and femoral trochlea has been well studied. We have examined the effect of anterior or posterior positioning of the
Abstract. Objective. Up to 20% of patients can remain dissatisfied following TKR. A proportion of TKRs will need early revision with aseptic loosening the most common. The ATTUNE TKR was introduced in 2011 as successor to its predicate design The PFC Sigma (DePuy Synthes, Warsaw, In). However, following reports of early failures of the
Background. Trabecular metal (TM) cones are designed to fill up major bone defects in total knee arthroplasty.
Background. Finite element (FE) models are frequently used in biomechanics to predict the behaviour of new implant designs. To increase the stability after severe bone loss
When performing total knee replacement (TKR), surgeons must select a size of
The purpose of this study is to evaluate accuracy of tibia cutting and tibia implantation in UKA which used navigation system for tibia cutting and tibia component implantation, and to evaluate clinical results. We performed 72 UKAs using navigation system from November, 2012. This study of 72 knees included 56 females and 16 males with an average operation age of 74.2 years and an average body mass index (BMI) of 24.8 kg/m2. The diagnosis was osteoarthritis (OA) in 67 knees and osteonecrosis (ON) in 5 knees. The UKA (Oxford partial knee microplasty, Biomet, Warsaw, IN) was used all cases. We evaluated patients clinically using the Japanese orthopaedic association (JOA) score, range of motion (ROM), operation time, the amount of bleeding and complications. Patients were evaluated clinically at preoperation and final follow up in JOA score and ROM. As an radiologic examination, we evaluated preoperative and postoperative lower limb alignment in FTA (femoro-tibial angle) by weightbearing long leg antero-posterior alignment view X-rays. Also we evaluated a
The purpose of the study was to compare the mechanical properties, oxidation and wear resistance of a vitamin E blended and moderately crosslinked polyethylene for total knee arthroplasty (MXE) in comparison with clinically established polyethylene materials. The following polyethylene materials were tested: CPE (30 kGy e-beam sterilized), XLPE (75 kGy gamma crosslinked @ 100°C), ViXLPE (0.1 % vitamin E blended, 80 kGy e-beam crosslinked @ 100°C), and MXE (0.1 % vitamin E blended polyethylene, 30 kGy gamma sterilized). For the different tests, the polyethylene materials were either unaged or artificially aged for two or six weeks according to ASTM F2003-02. The oxidation index was measured based on ASTM F2102 at a 1 mm depth. Small punch testing was performed based on ASTM F2977. Mechanical properties were measured on unaged materials according to ASTM D638. Wear simulation was performed on a load controlled 3 + 1 station knee wear simulator (EndoLab GmbH, Thansau, Germany) capable of reproducing loads and movement of highly demanding activities (HDA) as well as ISO 14243-1 load profiles. The load profiles were applied for 5 million cycles (mc) or delamination of the polyethylene components. Medium size AS e.motion. ®. PS Pro (Aesculap AG, Tuttlingen, Germany) femoral and
Introduction and Objective. Kinematic Alignment (KA) is a surgical technique that restores the native knee alignment following Total Knee Arthroplasty (TKA). The association of this technique with a medial pivot implant design (MP) attempts to reestablish the physiological kinematics of the knee. Aim of this study is to analyze the clinical and radiological outcomes of patients undergoing MP-TKA with kinematic alignment, and to assess the effect of the limb alignment and the orientation of the
Introduction and Objective. The geometry of the proximal tibia and distal femur is intimately linked with the biomechanics of the knee and it is to be considered in total knee arthroplasty (TKA) component positioning. The aim of the present study was to evaluate the proximal tibial torsion in relation to the flexion-extension axis of the knee in healthy and pathological cohort affected by knee osteoarthritis (OA). Materials and Methods. We retrospectively analyzed computed tomography scans of OA knee of 59 patients prior to TKA and non-arthritic knee of 39 patients as control. Posterior condylar angle (PCA), femoral tibial torsion (TEAs-PTC and TEAs-PTT), proximal tibial torsion (PTC-PTT and PCAx-PTC) and distance between tibial tuberosity and the trochlear groove (TT-TG) were measured. Results. No differences were found for gender, age, TG-TT and PCAn angles. Statistically significant differences were found for all the other angles considered. Significant relation was found between Tibial Torsion and TEA-PTT angles, between PCAx-PTC and TEA-PTC, between TEA-PTT and TEA-PTC and between PCAx-PTC and TEA-PTT. All measures, except TG-TT and PCAn angles, showed high validity (AUC > 75%) in detecting OA, with TEA-PTT displaying the highest validity with an AUC of 94.38%. Conclusions. This is the first study to find significant differences in terms of proximal tibia geometry and anatomy between non arthritic and OA knees. It is conceivable that such anatomy could be implicated in the development of OA. Based on our data, the TEAs is a valid reference for correct positioning of
Abstract. Background. The Oxford Domed Lateral (ODL) Unicompartmental Knee Replacement (UKR) has some advantages over other lateral UKRs, but the mobile bearing dislocation rate is high (1–6%). Medial dislocations, with the bearing lodged on the
Fractures of the prosthetic components after total knee arthroplasty (TKA) are rare but dangerous complications, sometimes difficult to diagnose and to manage. Aim of this study is to evaluate the incidence of component breakage and its treatment in our single institution's experience. We retrospectively review our institution registry. From 605 revision knee arthroplasties since 2000 to 2018, we found 8 cases of component breakage, of these 3 belonged to UKA, and 5 belonged to TKA. The UKA fractures were all on the metal
In the last years, 3d printing has progressively grown and it has reached a solid role in clinical practice. The main applications brought by 3d printing in orthopedic surgery are: preoperative planning, custom-made surgical guides, custom-made im- plants, surgical simulation, and bioprinting. The replica of the patient's anatomy, starting from the elaboration of medical volumetric images (CT, MRI, etc.), allows a progressive extremization of treatment personalization that could be tailored for every single patient. In complex cases, the generation of a 3d model of the patient's anatomy allows the surgeons to better understand the case — they can almost “touch the anatomy” —, to perform a more ac- curate preoperative planning and, in some cases, to perform device positioning before going to the surgical room (i.e. joint arthroplasty). 3d printing is also commonly used to produce surgical cutting guides, these guides are positioned intraoperatively on given landmarks to guide the surgeon to perform a specific surgical act (bone osteotomy, bone resection, implant position, etc.). In total knee arthroplasty, custom-made cutting guides have been developed to help the surgeon align the femoral and
Introduction. Knee osteoarthritis often causes malalignment and altering bone load. This malalignment is corrected during total knee arthroplasty surgery, balancing the ligaments. Nonetheless, preoperative gait patterns may influence postoperative prosthesis load and bone support. Thus, the purpose is to investigate the impact of preoperative gait patterns on postoperative femoral and tibial component migration in total knee arthroplasty. Method. In a prospective cohort study, 66 patients with primary knee osteoarthritis undergoing cemented Persona total knee arthroplasty were assessed. Preoperative knee kinematics was analyzed through dynamic radiostereometry and motion capture, categorizing patients into four homogeneous gait patterns. The four subgroups were labeled as the flexion group (n=20), the abduction (valgus) group (n=17), the anterior drawer group (n=10), and the tibial external rotation group (n=19). The femoral and tibial component migration was measured using static radiostereometry taken supine on the postoperative day (baseline) and 3-, 12-, and 24- months after surgery. Migration was evaluated as maximum total point motion. Result. Of the preoperatively defined four subgroups, the abduction group with a valgus-characterized gait pattern exhibited the highest migration for both the femoral (1.64 mm (CI95% 1.25; 2.03)) and tibial (1.21 mm (CI95% 0.89; 1.53)) components at 24-month follow-up. For the femoral components, the abduction group migrated 0.6 mm (CI95% 0.08; 1.12) more than the external rotation group at 24 months. For the
Tibial periprosthetic fracture is an important complication of the Oxford Unicompartmental Knee Replacement (OUKR). Primary fixation of cementless OUKR
An increasingly used treatment for end-stage ankle osteoarthritis is total ankle replacement (TAR). However, implant loosening and subsidence are commonly reported complications, leading to relatively high TAR failure rates. Malalignment of the TAR has often been postulated as the main reason for the high incidence of these complications. It remains unclear to what extent malalignment of the TAR affects the stresses at the bone-implant interface. Therefore, this study aims to elucidate the effect of TAR malalignment on the contact stresses on the bone-implant interface, thereby gaining more understanding of the potential role of malalignment in TAR failure. FE models of the neutrally aligned as well as malaligned CCI Evolution TAR implant (Van Straten Medical) were developed. Separate models were developed for the tibial and talar segment, with the TAR components in neutral alignment and 5° and 10° varus, valgus, anterior and posterior malalignment, resulting in a total of 9 differently aligned TAR models. Loading conditions of the terminal stance phase of the gait cycle, when the force on the ankle joint is highest (5.2x body weight), were applied. Peak and mean contact pressure and shear stress at the bone-implant interface were analyzed. Also, stress distributions on the bone-implant interface were visualized. In the neutrally aligned tibial and talar TAR models, peak contact pressures of respectively 98.4 MPa and 68.2 MPa, and shear stresses of respectively 49.3 MPa and 39.0 MPa were found. TAR malalignment increases peak contact pressure and shear stress on the bone-implant interface. A maximum peak contact pressure of 177 MPa was found for the 10° valgus malaligned
Objectives. Unicompartmental knee arthroplasty (UKA) is a demanding procedure, with
Abstract. Objectives. There is renewed interest in bi-unicondylar arthroplasty (Bi-UKA) for patients with medial and lateral tibiofemoral osteoarthritis, but a spared patellofemoral compartment and functional cruciate ligaments. The bone island between the two
Summary. Computer assisted surgery (CAS) during total knee arthroplasty (TKA) is known to improve prosthetic alignment in coronal and sagittal plane. In this systematic review, no evidence is found that CAS also improves axial component orientation when used during TKA. Introduction. Primary total knee arthroplasty (TKA) is a safe and cost-effective treatment for end-stage knee osteoarthritis. Correct prosthesis alignment is essential, since malpositioning of the prosthesis leads to worse functional outcome and increased wear, which compromises survival of the prosthesis. Computer assisted surgery (CAS) has been developed to enhance prosthesis alignment during TKA. CAS significantly improves postoperative coronal and sagittal alignment compared to conventional TKA. However, the influence of CAS on rotational alignment is a matter of debate. Therefore purpose of this review is to assess published evidence on the influence of CAS during TKA on postoperative rotational alignment. Patients and Methods. This review was performed according to the PRISMA Statement. An electronic literature search was performed in Pubmed, Medline and Embase on studies published between 1991 and April 2013. Studies were included when rotational alignment following imageless CAS-TKA was compared to rotational alignment following conventional TKA. At least one of the following outcome measures had to be assessed: 1) rotational alignment of the femoral component, 2) rotational alignment of the