header advert
Results 1 - 20 of 63
Results per page:
The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 6 | Pages 752 - 760
1 Jun 2007
Yamada Y Toritsuka Y Horibe S Sugamoto K Yoshikawa H Shino K

We used three-dimensional movement analysis by computer modelling of knee flexion from 0° to 50° in 14 knees in 12 patients with recurrent patellar dislocation and in 15 knees in ten normal control subjects to compare the in vivo three-dimensional movement of the patella. Flexion, tilt and spin of the patella were described in terms of rotation angles from 0°. The location of the patella and the tibial tubercle were evaluated using parameters expressed as percentage patellar shift and percentage tubercle shift. Patellar inclination to the femur was also measured and patellofemoral contact was qualitatively and quantitatively analysed. The patients had greater values of spin from 20° to 50°, while there were no statistically significant differences in flexion and tilt. The patients also had greater percentage patellar shift from 0° to 50°, percentage tubercle shift at 0° and 10° and patellar inclination from 0° to 50° with a smaller oval-shaped contact area from 20° to 50° moving downwards on the lateral facet. Patellar movement analysis using a three-dimensional computer model is useful to clearly demonstrate differences between patients with recurrent dislocation of the patella and normal control subjects


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 6 | Pages 746 - 751
1 Jun 2007
Yamada Y Toritsuka Y Yoshikawa H Sugamoto K Horibe S Shino K

We investigated the three-dimensional morphological differences of the articular surface of the femoral trochlea in patients with recurrent dislocation of the patella and a normal control group using three-dimensional computer models. There were 12 patients (12 knees) and ten control subjects (ten knees). Three-dimensional computer models of the femur, including the articular cartilage, were created. Evaluation was performed on the shape of the articular surface, focused on its convexity, and the proximal and mediolateral distribution of the articular cartilage of the femoral trochlea. The extent of any convexity, and the proximal distribution of the articular cartilage, expressed as the height, were shown by the angles about the transepicondylar axis. The mediolateral distribution of the articular cartilage was assessed by the location of the medial and lateral borders of the articular cartilage. The mean extent of convexity was 24.9° . sd. 6.7° for patients and 11.9° . sd. 3.6° for the control group (p < 0.001). The mean height of the articular cartilage was 91.3° . sd. 8.3° for the patients and 83.3° . sd. 7.7° for the control group (p = 0.03), suggesting a wider convex trochlea in the patients with recurrent dislocation of the patella caused by the proximally-extended convex area. The lateral border of the articular cartilage of the trochlea in the patients was more laterally located than in the control group. Our findings therefore quantitatively demonstrated differences in the shape and distribution of the articular cartilage on the femoral trochlea between patients with dislocation of the patella and normal subjects


The Bone & Joint Journal
Vol. 96-B, Issue 9 | Pages 1214 - 1221
1 Sep 2014
d’Entremont AG McCormack RG Horlick SGD Stone TB Manzary MM Wilson DR

Although it is clear that opening-wedge high tibial osteotomy (HTO) changes alignment in the coronal plane, which is its objective, it is not clear how this procedure affects knee kinematics throughout the range of joint movement and in other planes. Our research question was: how does opening-wedge HTO change three-dimensional tibiofemoral and patellofemoral kinematics in loaded flexion in patients with varus deformity?Three-dimensional kinematics were assessed over 0° to 60° of loaded flexion using an MRI method before and after opening-wedge HTO in a cohort of 13 men (14 knees). Results obtained from an iterative statistical model found that at six and 12 months after operation, opening-wedge HTO caused increased anterior translation of the tibia (mean 2.6 mm, p <  0.001), decreased proximal translation of the patella (mean –2.2 mm, p <  0.001), decreased patellar spin (mean –1.4°, p < 0.05), increased patellar tilt (mean 2.2°, p < 0.05) and changed three other parameters. The mean Western Ontario and McMaster Universities Arthritis Index improved significantly (p < 0.001) from 49.6 (standard deviation (. sd. ) 16.4) pre-operatively to a mean of 28.2 (. sd. 16.6) at six months and a mean of 22.5 (. sd.  14.4) at 12 months. The three-dimensional kinematic changes found may be important in explaining inconsistency in clinical outcomes, and suggest that measures in addition to coronal plane alignment should be considered. . Cite this article: Bone Joint J 2014; 96-B:1214–21


Bone & Joint Research
Vol. 2, Issue 1 | Pages 1 - 8
1 Jan 2013
Costa AJ Lustig S Scholes CJ Balestro J Fatima M Parker DA

Objectives. There remains a lack of data on the reliability of methods to estimate tibial coverage achieved during total knee replacement. In order to address this gap, the intra- and interobserver reliability of a three-dimensional (3D) digital templating method was assessed with one symmetric and one asymmetric prosthesis design. Methods. A total of 120 template procedures were performed according to specific rotational and over-hang criteria by three observers at time zero and again two weeks later. Total and sub-region coverage were calculated and the reliability of the templating and measurement method was evaluated. Results. Excellent intra- and interobserver reliability was observed for total coverage, when minimal component overhang (intraclass correlation coefficient (ICC) = 0.87) or no component overhang (ICC = 0.92) was permitted, regardless of rotational restrictions. Conclusions. Measurement of tibial coverage can be reliable using the templating method described even if the rotational axis selected still has a minor influence


The Bone & Joint Journal
Vol. 100-B, Issue 1 | Pages 50 - 55
1 Jan 2018
Kono K Tomita T Futai K Yamazaki T Tanaka S Yoshikawa H Sugamoto K

Aims

In Asia and the Middle-East, people often flex their knees deeply in order to perform activities of daily living. The purpose of this study was to investigate the 3D kinematics of normal knees during high-flexion activities. Our hypothesis was that the femorotibial rotation, varus-valgus angle, translations, and kinematic pathway of normal knees during high-flexion activities, varied according to activity.

Materials and Methods

We investigated the in vivo kinematics of eight normal knees in four male volunteers (mean age 41.8 years; 37 to 53) using 2D and 3D registration technique, and modelled the knees with a computer aided design program. Each subject squatted, kneeled, and sat cross-legged. We evaluated the femoral rotation and varus-valgus angle relative to the tibia and anteroposterior translation of the medial and lateral side, using the transepicodylar axis as our femoral reference relative to the perpendicular projection on to the tibial plateau. This method evaluates the femur medially from what has elsewhere been described as the extension facet centre, and differs from the method classically applied.


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_7 | Pages 87 - 87
1 Jul 2022
Rajput V Fontalis A Plastow R Kayani B Giebaly D Hansejee S Magan A Haddad F
Full Access

Abstract. Introduction. Coronal plane alignment of the knee (CPAK) classification utilises the native arithmetic hip-knee alignment to calculate the constitutional limb alignment and joint line obliquity which is important in pre-operative planning. The objective of this study was to compare the accuracy and reproducibility of measuring the lower limb constitutional alignment with the traditional long leg radiographs versus computed tomography (CT) used for pre-operative planning in robotic-arm assisted TKA. Methods. Digital long leg radiographs and pre-operative CT scan plans of 42 patients (46 knees) with osteoarthritis undergoing robotic-arm assisted total knee replacement were analysed. The constitutional alignment was established by measuring the medial proximal tibial angle (mPTA), lateral distal femoral angle (LDFA), weight bearing hip knee alignment (WBHKA), arithmetic hip knee alignment (aHKA) and joint line obliquity (JLO). Furthermore, the Coronal Plane Alignment of the Knee (CPAK) classification was utilised to classify the patients based on their coronal knee alignment phenotype. Results. Mean age of the patients was 66 years (SD 9) and mean BMI 31.2 (SD 3.9). There were 27 left and 19 right sided surgeries. The Pearson's corelation coefficient was 0.722 (p=0.008) for WBHKA; 0.729 (p<0.001) for MPTA; 0.618 (p=0.14) for aHKA; 0.502 (p= 0.04) for LDFA and 0.305 (p=0.234) for JLO. CPAK classification was concordant for 53% study participants between the two groups. Conclusion. Three-dimensional CT-based modelling with computer software more accurately predicts constitutional limb alignment and JLO as defined by the CPAK classification compared to plain long-leg radiographs in pre-operative planning of total knee arthroplasty


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_9 | Pages 34 - 34
1 Oct 2020
Mahfouz MR
Full Access

Introduction. The objective of this study is to assess the use of ultrasound (US) as a radiation free imaging modality to reconstruct three-dimensional knee anatomy. Methods. An OEM US system is fitted with an electromagnetic (EM) tracker that is integrated into the US probe, allowing for 3D tracking of probe and femur and tibia. The raw US RF signals are acquired and using real time signal processing, bone boundaries are extracted. Bone boundaries are then combined with the EM sensor information in a 3D point cloud for both femur and tibia. Using a statistical shape model, the patient specific surface is reconstructed by optimizing bone geometry to match the point clouds. An accuracy analysis was then conducted for 11 cadavers by comparing the 3D US models to those created using CT scans. Results. The results revealed the US bone models were accurate compared to the CT models (Mean RMS: femur: 1.03±0.15 mm, tibia:1.11± 0.13). Also, femoral landmarking proved to be accurate (transepicondylar axis: 1.07±0.65°, Posterior condylar axis: 0.73±0.41° Distal condylar axis: 1.12±0.89°, Medial AP: 1.39±1.18 mm, Lateral AP: 1.56±1.15 mm, TEA width: 1.2±0.87 mm). Tibial landmarking errors were slightly higher (Posterior slope axis: 2 ±1.19° and Tubercle axis: 1.8±1.37°). The models were then used to evaluate implant sizing as, 90% of the femurs and 60% of the tibias were sized correctly, while the others were off only one size. Discussion. The 3D US bone models were proven to be accurate compared to CT and can be used for preoperative planning. 3D ultrasound is radiation free and offers numerous clinical opportunities for bone creation in minutes during their office visit, surgeon-patient pre-operative planning, implant sizing and selection, 3D dynamic ligament balancing and intra-operative registration for use with robots and navigation systems


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_9 | Pages 35 - 35
1 Oct 2020
Mahoney OM
Full Access

Introduction. The role of the (PCL) in modulating knee kinematics has been well documented. We asked whether function of the (PCL) would be better preserved by incorporating a three-dimensional model for planning and placement. Methods. We evaluated patients (n=59) enrolled into a, prospective, study of conventional instrumentation (25) vs. 3D modeling (34) for (CR) TKA from July 2016 to Feb 2018. Follow-up included clinical exams, PROMs, and serial radiographs up to 24 months after surgery. We measured kinematic patterns radiographically at two years postoperatively. Variables were compared using simple linear regression, one-way ANOVA, and Fisher's exact test. We hypothesized that: 1. well-preserved PCL would demonstrate a more normal kinematic pattern of increasing rollback with increasing knee flexion without paradoxical movement, and 2. this pattern would be associated with improved intra- and post-operative motion and function. Results. The 3D group exhibited a monotonic pattern of increasing rollback in more than twice the proportion of patients as the conventional group (18/34 (53%) vs. 6/25(24%), p=0.034). Two yrs post-operatively, the maximum active flexion was 5 deg greater on average for the 3D group (mean(SD) 111.8(6.6) vs. 106.8 (8.8), p=0.015), and we saw positive linear correlation of femoral rollback with maximum active (r=.39, p=0.002) and passive (r=.45, p<0.001) flexion. Increased rollback was correlated with better Knee Society symptom scores during the early post-operative period (r=.37, p=0.003 and r=.39, p=0.002, respectively). Discussion. This study demonstrates the value of 3D reconstructions to improve kinematics in TKA. In fact, PCL retaining TKA has been consistently linked to paradoxical rollback, predisposing the extensor mechanism to increased stress and reduced femoral clearance, limiting flexion. Paradoxical movement was more prevalent in conventionally instrumented knees. There were notable differences in PROMS even at six weeks post TKR. More normal kinematics were associated with increased motion and improved patient reported outcomes. For any figures or tables, please contact the authors directly


The Bone & Joint Journal
Vol. 95-B, Issue 6 | Pages 782 - 787
1 Jun 2013
Niki Y Takeda Y Udagawa K Enomoto H Toyama Y Suda Y

We investigated the characteristics of patients who achieved Japanese-style deep flexion (seiza-sitting) after total knee replacement (TKR) and measured three-dimensional positioning and the contact positions of the femoral and tibial components. Seiza-sitting was achieved after surgery by 23 patients (29 knees) of a series of 463 TKRs in 341 patients. Pre-operatively most of these patients were capable of seiza-sitting, had a lower body mass index and a favourable attitude towards the Japanese lifestyle (27 of 29 knees). According to two-/three-dimensional image registration analysis in the seiza-sitting position, flexion, varus and internal rotation angles of the tibial component relative to the femoral component had means of 148° (. sd. 8.0), 1.9° (. sd. 3.2) and 13.4° (. sd. 5.9), respectively. Femoral surface contact positions tended to be close to the posterior edge of the tibial polyethylene insert, particularly in the lateral compartment, but only 8.3% (two of 24) of knees showed femoral subluxation over the posterior edge. The mean contact positions of the femoral cam on the tibial post were located 7.8 mm (. sd. 1.5) proximal to the lowest point of the polyethylene surface and 5.5 mm (. sd. 0.9) medial to the centre of the post, indicating that the post-cam contact position translated medially during seiza-sitting, but not proximally. Collectively, the seiza-sitting position seems safe against component dislocation, but the risks of posterior edge loading and breakage of the tibial polyethylene post remain. Cite this article: Bone Joint J 2013;95-B:782–7


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_11 | Pages 9 - 9
1 Oct 2019
Kinsey T Chen AF Hozack WJ Mont MA Orozco F Mahoney OM
Full Access

Introduction. Component position and overall limb alignment following total knee arthroplasty (TKA) have been shown to influence prosthetic survivorship and clinical outcomes. 1. The objective of this study was to compare the accuracy to plan of three-dimensional modeled (3D) TKA with manual TKA for component alignment and position. Methods. An open-label prospective clinical study was conducted to compare 3D modeling with manual TKA (non-randomized) at 4 U.S. centers between July 2016 and August 2018. Men and women aged > 18 with body mass index < 40kg/m. 2. scheduled for unilateral primary TKA were recruited for the study. 144 3DTKA and 86 manual TKA (230 patients) were included in the analysis of accuracy outcomes. Seven high-volume, arthroplasty fellowship-trained surgeons performed the surgeries. The surgeon targeted a neutral (0°) mechanical axis for all except 9 patients (4%) for whom the target was within 0°±3°. Computed tomography (CT) scans obtained approximately 6 weeks post-operatively were analyzed using anatomical landmarks to determine femoral and tibial component varus/valgus position, femoral component internal/external rotation, and tibial component posterior slope. Absolute deviation from surgical plan was defined as the absolute value of the difference between the CT measurement and the surgeon's operative plan. Smaller absolute deviation from plan indicated greater accuracy. Mean component positions for manual and 3DTKA groups were compared using two-sample t tests for unequal variances. Differences of absolute deviations from plan were compared using stratified Wilcoxon tests, which controlled for study center and accounted for skewed distributions of the absolute values. Alpha was 0.05 two-sided. At the time of this report, CT measurements of femoral component rotation position referenced from the posterior condylar axis were not yet completed; therefore, the current analysis of femoral component rotation accuracy to plan reflects one center that exclusively used manual instruments referencing the transepicondylar axis (TEA). Results. Coronal positions of the femoral components measured via CT for manual and 3D TKA, respectively, were (mean ± standard deviation) 0.1°±1.6° varus and 0.0°±1.4° varus (p=0.533); positions of the tibial components were 1.9°±2.4° varus and 0.9°±2.0° varus (p=0.002). Positions of external femoral component rotation relative to the TEA were 1.1°±2.3° and 0.5°±2.3°, respectively (p=0.036). Tibial slopes were 3.7°±3.0° and 3.2°±1.8°, respectively (p=0.193). Comparing absolute deviation from plan between groups, 3DTKA demonstrated greater accuracy for tibial component alignment [median (25. th. , 75. th. percentiles) absolute deviation from plan, 1.7° (0.9°, 2.9°) vs. 0.9°(0.4°, 1.9°), p<.001], femoral component rotation [1.4° (0.9°, 2.5°) vs. 0.9° (0.7°, 1.5°), p=0.015], and tibial slope [2.9° (1.5°, 5.0°) vs. 1.1° (0.6°, 2.0°), p<.001] (Table 1). Accuracy for femoral component alignment was comparable [1.0° (0.4°, 1.7°) vs. 0.9° (0.4°, 1.5°), p=0.159] (Table 1). Discussion and Conclusions. Our findings support improved accuracy to the surgical plan utilizing 3DTKA compared with manual TKA. Compared to manual TKA, 3DTKA cases were typically 47% more accurate for tibial component alignment, 62% more accurate for tibial slope, and 36% more accurate for femoral component rotation (calculated as percent reduction of median absolute deviation). The evaluation of femoral component coronal alignment reflected already very good baseline accuracy of the surgeons utilizing the intramedullary femoral guide system (Table 1). As optimal component position in TKA affects joint kinematics and may positively influence implant longevity, it is important for surgeons to maximize the opportunity to direct component positioning. Further clinical data is needed to study potential longer-term benefits of robotic technologies. For figures, tables, or references, please contact authors directly


Bone & Joint Research
Vol. 5, Issue 7 | Pages 294 - 300
1 Jul 2016
Nishioka H Nakamura E Hirose J Okamoto N Yamabe S Mizuta H

Objectives. The purpose of this study was to clarify the appearance of the reparative tissue on the articular surface and to analyse the properties of the reparative tissue after hemicallotasis osteotomy (HCO) using MRI T1ρ and T2 mapping. Methods. Coronal T1ρ and T2 mapping and three-dimensional gradient-echo images were obtained from 20 subjects with medial knee osteoarthritis. We set the regions of interest (ROIs) on the full-thickness cartilage of the medial femoral condyle (MFC) and medial tibial plateau (MTP) of the knee and measured the cartilage thickness (mm) and T1ρ and T2 relaxation times (ms). Statistical analysis of time-dependent changes in the cartilage thickness and the T1ρ and T2 relaxation times was performed using one-way analysis of variance, and Scheffe’s test was employed for post hoc multiple comparison. Results. The cartilage-like repair tissue appeared on the cartilage surface of the medial compartment post-operatively, and the cartilage thickness showed a significant increase between the pre-operative and one-year post-operative time points (MFC; p = 0.003, MTP; p < 0.001). The T1ρ values of the cartilage-like repair tissue showed no difference over time, however, the T2 values showed a significant decrease between the pre-operative and one-year post-operative time points (MFC; p = 0.004, MTP; p = 0.040). Conclusion. This study clarified that the fibrocartilage-like repair tissue appeared on the articular surface of the medial compartment after HCO as evidenced by MRI T1ρ and T2 mapping. Cite this article: H. Nishioka, E. Nakamura, J. Hirose, N. Okamoto, S. Yamabe, H. Mizuta. MRI T1ρ and T2 mapping for the assessment of articular cartilage changes in patients with medial knee osteoarthritis after hemicallotasis osteotomy. Bone Joint Res 2016;5:294–300. DOI: 10.1302/2046-3758.57.BJR-2016-0057.R1


Bone & Joint Research
Vol. 1, Issue 10 | Pages 263 - 271
1 Oct 2012
Sharma GB Saevarsson SK Amiri S Montgomery S Ramm H Lichti DD Lieck R Zachow S Anglin C

Objectives. Numerous complications following total knee replacement (TKR) relate to the patellofemoral (PF) joint, including pain and patellar maltracking, yet the options for in vivo imaging of the PF joint are limited, especially after TKR. We propose a novel sequential biplane radiological method that permits accurate tracking of the PF and tibiofemoral (TF) joints throughout the range of movement under weightbearing, and test it in knees pre- and post-arthroplasty. Methods. A total of three knees with end-stage osteoarthritis and three knees that had undergone TKR at more than one year’s follow-up were investigated. In each knee, sequential biplane radiological images were acquired from the sagittal direction (i.e. horizontal X-ray source and 10° below horizontal) for a sequence of eight flexion angles. Three-dimensional implant or bone models were matched to the biplane images to compute the six degrees of freedom of PF tracking and TF kinematics, and other clinical measures. Results. The mean and standard deviation for the six degrees of freedom of PF tracking and TF kinematics were computed. TF and PF kinematics were highly accurate (< 0.9 mm, < 0.6°) and repeatable. Conclusions. The developed method permitted measuring of in vivo PF tracking and TF kinematics before and after TKR throughout the range of movement. This method could be a useful tool for investigating differences between cohorts of patients (e.g., with and without pain) impacting clinical decision-making regarding surgical technique, revision surgery or implant design


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 5 | Pages 629 - 633
1 May 2011
Hirschmann MT Konala P Amsler F Iranpour F Friederich NF Cobb JP

We studied the intra- and interobserver reliability of measurements of the position of the components after total knee replacement (TKR) using a combination of radiographs and axial two-dimensional (2D) and three-dimensional (3D) reconstructed CT images to identify which method is best for this purpose. A total of 30 knees after primary TKR were assessed by two independent observers (an orthopaedic surgeon and a radiologist) using radiographs and CT scans. Plain radiographs were highly reliable at measuring the tibial slope, but showed wide variability for all other measurements; 2D-CT also showed wide variability. 3D-CT was highly reliable, even when measuring rotation of the femoral components, and significantly better than 2D-CT. Interobserver variability in the measurements on radiographs were good (intraclass correlation coefficient (ICC) 0.65 to 0.82), but rotational measurements on 2D-CT were poor (ICC 0.29). On 3D-CT they were near perfect (ICC 0.89 to 0.99), and significantly more reliable than 2D-CT (p < 0.001). 3D-reconstructed images are sufficiently reliable to enable reporting of the position and orientation of the components. Rotational measurements in particular should be performed on 3D-reconstructed CT images. When faced with a poorly functioning TKR with concerns over component positioning, we recommend 3D-CT as the investigation of choice


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 8 | Pages 1016 - 1021
1 Aug 2006
Delport HP Banks SA De Schepper J Bellemans J

Mobile-bearing posterior-stabilised knee replacements have been developed as an alternative to the standard fixed- and mobile-bearing designs. However, little is known about the in vivo kinematics of this new group of implants. We investigated 31 patients who had undergone a total knee replacement with a similar prosthetic design but with three different options: fixed-bearing posterior cruciate ligament-retaining, fixed-bearing posterior-stabilised and mobile-bearing posterior-stabilised. To do this we used a three-dimensional to two-dimensional model registration technique. Both the fixed- and mobile-bearing posterior-stabilised configurations used the same femoral component. We found that fixed-bearing posterior stabilised and mobile-bearing posterior-stabilised knee replacements demonstrated similar kinematic patterns, with consistent femoral roll-back during flexion. Mobile-bearing posterior-stabilised knee replacements demonstrated greater and more natural internal rotation of the tibia during flexion than fixed-bearing posterior-stabilised designs. Such rotation occurred at the interface between the insert and tibial tray for mobile-bearing posterior-stabilised designs. However, for fixed-bearing posterior-stabilised designs, rotation occurred at the proximal surface of the bearing. Posterior cruciate ligament-retaining knee replacements demonstrated paradoxical sliding forward of the femur. We conclude that mobile-bearing posterior-stabilised knee replacements reproduce internal rotation of the tibia more closely during flexion than fixed-bearing posterior-stabilised designs. Furthermore, mobile-bearing posterior-stabilised knee replacements demonstrate a unidirectional movement which occurs at the upper and lower sides of the mobile insert. The femur moves in an anteroposterior direction on the upper surface of the insert, whereas the movement at the lower surface is pure rotation. Such unidirectional movement may lead to less wear when compared with the multidirectional movement seen in fixed-bearing posterior-stabilised knee replacements, and should be associated with more evenly applied cam-post stresses


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 11 | Pages 1457 - 1461
1 Nov 2012
Krishnan SP Dawood A Richards R Henckel J Hart AJ

Improvements in the surgical technique of total knee replacement (TKR) are continually being sought. There has recently been interest in three-dimensional (3D) pre-operative planning using magnetic resonance imaging (MRI) and CT. The 3D images are increasingly used for the production of patient-specific models, surgical guides and custom-made implants for TKR. The users of patient-specific instrumentation (PSI) claim that they allow the optimum balance of technology and conventional surgery by reducing the complexity of conventional alignment and sizing tools. In this way the advantages of accuracy and precision claimed by computer navigation techniques are achieved without the disadvantages of additional intra-operative inventory, new skills or surgical time. This review describes the terminology used in this area and debates the advantages and disadvantages of PSI


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 5 | Pages 597 - 604
1 May 2008
Selmi TAS Verdonk P Chambat P Dubrana F Potel J Barnouin L Neyret P

Autologous chondrocyte implantation is an established method of treatment for symptomatic articular defects of cartilage. CARTIPATCH is a monolayer-expanded cartilage cell product which is combined with a novel hydrogel to improve cell phenotypic stability and ease of surgical handling. Our aim in this prospective, multicentre study on 17 patients was to investigate the clinical, radiological, arthroscopic and histological outcome at a minimum follow-up of two years after the implantation of autologous chondrocytes embedded in a three-dimensional alginate-agarose hydrogel for the treatment of chondral and osteochondral defects. Clinically, all the patients improved significantly. Patients with lesions larger than 3 cm. 2. improved significantly more than those with smaller lesions. There was no correlation between the clinical outcome and the body mass index, age, duration of symptoms and location of the defects. The mean arthroscopic International Cartilage Repair Society score was 10 (5 to 12) of a maximum of 12. Predominantly hyaline cartilage was seen in eight of the 13 patients (62%) who had follow-up biopsies. Our findings suggest that autologous chondrocyte implantation in combination with a novel hydrogel results in a significant clinical improvement at follow-up at two years, more so for larger and deeper lesions. The surgical procedure is uncomplicated, and predominantly hyaline cartilage-like repair tissue was observed in eight patients


Bone & Joint Open
Vol. 1, Issue 7 | Pages 339 - 345
3 Jul 2020
MacDessi SJ Griffiths-Jones W Harris IA Bellemans J Chen DB

Aims

An algorithm to determine the constitutional alignment of the lower limb once arthritic deformity has occurred would be of value when undertaking kinematically aligned total knee arthroplasty (TKA). The purpose of this study was to determine if the arithmetic hip-knee-ankle angle (aHKA) algorithm could estimate the constitutional alignment of the lower limb following development of significant arthritis.

Methods

A matched-pairs radiological study was undertaken comparing the aHKA of an osteoarthritic knee (aHKA-OA) with the mechanical HKA of the contralateral normal knee (mHKA-N). Patients with Grade 3 or 4 Kellgren-Lawrence tibiofemoral osteoarthritis in an arthritic knee undergoing TKA and Grade 0 or 1 osteoarthritis in the contralateral normal knee were included. The aHKA algorithm subtracts the lateral distal femoral angle (LDFA) from the medial proximal tibial angle (MPTA) measured on standing long leg radiographs. The primary outcome was the mean of the paired differences in the aHKA-OA and mHKA-N. Secondary outcomes included comparison of sex-based differences and capacity of the aHKA to determine the constitutional alignment based on degree of deformity.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXIX | Pages 105 - 105
1 Jul 2012
Brigstocke G Agarwal Y Bradley N Crocombe A
Full Access

Aim. The aim of this FE study was to analyse the comparative behaviour of cement and metal based augments in TKR and quantify the stresses within these different augments and underlying cancellous bone. Materials and methods. A three-dimensional FE model was constructed from a CT scan of the proximal tibia using SIMPLEWARE v3.2 image processing software. The tibial component of a TKR was implanted with either a block or wedge-shaped augment made of either metal or cement. The model was axially loaded with a force of 3600N and testing was conducted with both evenly and eccentrically distributed loads. Results. Upon loading the FE model, the von-Mises stresses in the cancellous bone underneath the augments was higher with cement based augments in comparison their metal counterparts. When evenly loaded the maximum recorded compressive stresses within the metal augments were 5 times less than the endurance limit of the material, whilst the stresses within cement augments were only half the endurance limit of the material. Upon eccentric loading compressive stresses within the cement based augments in excess of the endurance limit were recorded. Discussion. The FE model has demonstrated that cement based augments undergo greater deformation when loaded and transfer greater loads to the underlying cancellous bone thus reducing the possibility of stress shielding. However, the compressive stresses within cement based augments are too close to the endurance limit of the material and with uneven loading even exceed it. This would imply that cement based augments are more prone to fatigue failure than their metal counterparts. Conclusion. This study supports the use of metal over cement based augments in augmented and revision TKR surgery


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXIX | Pages 59 - 59
1 Jul 2012
Brigstocke G Agarwal Y Bradley N Frehill B Crocombe A
Full Access

Introduction. In complex primary and revision total knee replacement (TKR) the operating surgeon may encounter proximal tibial bone defects. The correct management of such defects is fundamental to both the initial stability and long-term survival of the prosthesis. Block or wedge-shaped metal augments are used to address some such type II unconstrained defects. Aim. The aim of this finite element (FE) study was to assess the effects of block and wedge-shaped metal augments upon the shear stresses in the cement mantle at the bone-implant interface of an augmented TKR. Materials and methods. A three-dimensional FE model was constructed from a computer tomography scan of the proximal tibia using SIMPLEWARE v3.2 image processing software. The tibial component of a TKR was implanted with either a block or wedge-shaped metal augment in-situ. The model was axially loaded with a force of 3600N, equating to four times the body weight of a 90kg patient, and the load evenly distributed between the medial and lateral tibial plateaux. Results. Upon loading of the FE model, shear stresses in the cement-augment interface were found to act towards the centre of the prosthesis. The maximal magnitudes of these ‘reverse’ shear stresses were 3.6MPa with a block-shaped augment and 2.6MPa with a wedge-shaped augment. These values are significantly lower than the reported fatigue limit of cement of 17MPa. Conclusion. The FE model has demonstrated reduced cement shear stresses with a wedge-shaped rather than block-shaped augment. However, both values of maximal recorded shear stresses are below the fatigue limit of cement. Therefore, either a wedge or block-shaped augments can be used and the choice of augment may be determined by the shape of the defect and the quality of the underlying bone


The Journal of Bone & Joint Surgery British Volume
Vol. 84-B, Issue 1 | Pages 50 - 53
1 Jan 2002
Bellemans J Banks S Victor J Vandenneucker H Moemans A

Our purpose was to determine the mechanism which allows the maximum knee flexion in vivo after a posterior-cruciate-ligament (PCL)-retaining total knee arthroplasty. Using three-dimensional computer-aided design videofluoroscopy of deep squatting in 29 patients, we determined that in 72% of knees, direct impingement of the tibial insert posteriorly against the back of the femur was the factor responsible for blocking further flexion. In view of this finding we defined a new parameter termed the ‘posterior condylar offset’. In 150 consecutive arthroplasties of the knee, the magnitude of posterior condylar offset was found to correlate with the final range of flexion