Advertisement for orthosearch.org.uk
Results 1 - 20 of 136
Results per page:
The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 3 | Pages 448 - 453
1 Mar 2010
Benson RT McDonnell SM Knowles HJ Rees JL Carr AJ Hulley PA

The aim of this study was to investigate the occurrence of tissue hypoxia and apoptosis at different stages of tendinopathy and tears of the rotator cuff. We studied tissue from 24 patients with eight graded stages of either impingement (mild, moderate and severe) or tears of the rotator cuff (partial, small, medium, large and massive) and three controls. Biopsies were analysed using three immunohistochemical techniques, namely antibodies against HIF-1α (a transcription factor produced in a hypoxic environment), BNip3 (a HIF-1α regulated pro-apoptotic protein) and TUNEL (detecting DNA fragmentation in apoptosis). The HIF-1α expression was greatest in mild impingement and in partial, small, medium and large tears. BNip3 expression increased significantly in partial, small, medium and large tears but was reduced in massive tears. Apoptosis was increased in small, medium, large and massive tears but not in partial tears. These findings reveal evidence of hypoxic damage throughout the spectrum of pathology of the rotator cuff which may contribute to loss of cells by apoptosis. This provides a novel insight into the causes of degeneration of the rotator cuff and highlights possible options for treatment


Bone & Joint Research
Vol. 6, Issue 1 | Pages 57 - 65
1 Jan 2017
Gumucio JP Flood MD Bedi A Kramer HF Russell AJ Mendias CL

Objectives. Rotator cuff tears are among the most frequent upper extremity injuries. Current treatment strategies do not address the poor quality of the muscle and tendon following chronic rotator cuff tears. Hypoxia-inducible factor-1 alpha (HIF-1α) is a transcription factor that activates many genes that are important in skeletal muscle regeneration. HIF-1α is inhibited under normal physiological conditions by the HIF prolyl 4-hydroxylases (PHDs). In this study, we used a pharmacological PHD inhibitor, GSK1120360A, to enhance the activity of HIF-1α following the repair of a chronic cuff tear, and measured muscle fibre contractility, fibrosis, gene expression, and enthesis mechanics. Methods. Chronic supraspinatus tears were induced in adult rats, and repaired 28 days later. Rats received 0 mg/kg, 3 mg/kg, or 10 mg/kg GSK1120360A daily. Collagen content, contractility, fibre type distribution and size, the expression of genes involved in fibrosis, lipid accumulation, atrophy and inflammation, and the mechanical properties of the enthesis were then assessed two weeks following surgical repair. Results. At two weeks following repair, treatment groups showed increased muscle mass but there was a 15% decrease in force production in the 10 mg/kg group from controls, and no difference between the 0 mg/kg and the 3 mg/kg groups. There was a decrease in the expression of several gene transcripts related to matrix accumulation and fibrosis, and a 50% decrease in collagen content in both treated groups compared with controls. Additionally, the expression of inflammatory genes was reduced in the treated groups compared with controls. Finally, PHD inhibition improved the maximum stress and displacement to failure in repaired tendons. Conclusions. GSK1120360A resulted in improved enthesis mechanics with variable effects on muscle function. PHD inhibition may be beneficial for connective tissue injuries in which muscle atrophy has not occurred. Cite this article: J. P. Gumucio, M. D. Flood, A. Bedi, H. F. Kramer, A. J. Russell, C. L. Mendias. Inhibition of prolyl 4-hydroxylase decreases muscle fibrosis following chronic rotator cuff tear. Bone Joint Res 2017;6:57–65. DOI: 10.1302/2046-3758.61.BJR-2016-0232.R1


Bone & Joint Research
Vol. 3, Issue 9 | Pages 262 - 272
1 Sep 2014
Gumucio J Flood M Harning J Phan A Roche S Lynch E Bedi A Mendias C

Objectives . Rotator cuff tears are among the most common and debilitating upper extremity injuries. Chronic cuff tears result in atrophy and an infiltration of fat into the muscle, a condition commonly referred to as ‘fatty degeneration’. While stem cell therapies hold promise for the treatment of cuff tears, a suitable immunodeficient animal model that could be used to study human or other xenograft-based therapies for the treatment of rotator cuff injuries had not previously been identified. Methods . A full-thickness, massive supraspinatus and infraspinatus tear was induced in adult T-cell deficient rats. We hypothesised that, compared with controls, 28 days after inducing a tear we would observe a decrease in muscle force production, an accumulation of type IIB fibres, and an upregulation in the expression of genes involved with muscle atrophy, fibrosis and inflammation. Results . Chronic cuff tears in nude rats resulted in a 30% to 40% decrease in muscle mass, a 23% reduction in production of muscle force, and an induction of genes that regulate atrophy, fibrosis, lipid accumulation, inflammation and macrophage recruitment. Marked large lipid droplet accumulation was also present. Conclusions . The extent of degenerative changes in nude rats was similar to what was observed in T-cell competent rats. T cells may not play an important role in regulating muscle degeneration following chronic muscle unloading. The general similarities between nude and T-cell competent rats suggest the nude rat is likely an appropriate preclinical model for the study of xenografts that have the potential to enhance the treatment of chronically torn rotator cuff muscles. Cite this article: Bone Joint Res 2014;3:262–72


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 8 | Pages 1105 - 1109
1 Aug 2006
Kandemir U Allaire RB Jolly JT Debski RE McMahon PJ

Our aim was to determine the most repeatable three-dimensional measurement of glenoid orientation and to compare it between shoulders with intact and torn rotator cuffs. Our null hypothesis was that glenoid orientation in the scapulae of shoulders with a full-thickness tear of the rotator cuff was the same as that in shoulders with an intact rotator cuff. We studied 24 shoulders in cadavers, 12 with an intact rotator cuff and 12 with a full-thickness tear. Two different observers used a three-dimensional digitising system to measure glenoid orientation in the scapular plane (ie glenoid inclination) using six different techniques. Glenoid version was also measured. The overall precision of the measurements revealed an error of less than 0.6°. Intraobserver reliability (correlation coefficients of 0.990 and 0.984 for each observer) and interobserver reliability (correlation coefficient of 0.985) were highest for measurement of glenoid inclination based on the angle obtained from a line connecting the superior and inferior points of the glenoid and that connecting the most superior point of the glenoid and the most superior point on the body of the scapula. There were no differences in glenoid inclination (p = 0.34) or glenoid version (p = 0.12) in scapulae from shoulders with an intact rotator cuff and those with a full-thickness tear. Abnormal glenoid orientation was not present in shoulders with a torn rotator cuff


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_14 | Pages 16 - 16
1 Nov 2018
Higashihira S Kobayashi N Inaba Y Oishi T Choe H Ike H Kobayashi D Watanabe S Saito T
Full Access

In this study, we evaluated the labrum tear using radial sequence 3D Multiple Echo Recombined Gradient Echo (MERGE) MRI without arthrography based on modified Czerny's classification, comparing with actual arthroscopic findings. A total of 61 hips including 27 hips of femoroacetabular impingement (FAI), 19 hips of borderline development dysplasia of the hip (BDDH) and 15 hips of early stage osteoarthritis (OA) were enrolled this retrospective study. MRI findings evaluated in each three regions of interest; anterior region, anterolateral region, and lateral region. The cases with severe degeneration that is not concordant with any original Czerny's classification is defined as stage4. We compared MRI findings with arthroscopic findings and calculated the sensitivity, specificity, and likelihood ratio in terms of the existence of labrum tear. MRI findings revealed labrum tear more frequently in anterolateral than lateral (p<0.001). Especially in FAI group, labrum tear was more frequently observed by MRI in anterolateral than lateral (p=0.006). In comparison with MRI findings and arthroscopic findings, the sensitivity was 97%, specificity was 79% and likelihood ratio was 4.59 as average of all regions in terms of the existence of labrum tear. In each region, sensitivity and specificity was 97% and 50% in anterior, 97% and 100% specificity in anterolateral, 94% and 81% in lateral, respectively. Thus, MERGE MRI revealed excellent sensitivity and specificity for diagnosis of labrum tear, especially in anterolateral region. The cases with severely degenerated labrum were classified as newly defined stage 4, which was recognized frequently in OA cases


Bone & Joint Research
Vol. 3, Issue 8 | Pages 252 - 261
1 Aug 2014
Tilley JMR Murphy RJ Chaudhury S Czernuszka JT Carr AJ

Objectives . The effects of disease progression and common tendinopathy treatments on the tissue characteristics of human rotator cuff tendons have not previously been evaluated in detail owing to a lack of suitable sampling techniques. This study evaluated the structural characteristics of torn human supraspinatus tendons across the full disease spectrum, and the short-term effects of subacromial corticosteroid injections (SCIs) and subacromial decompression (SAD) surgery on these structural characteristics. . Methods . Samples were collected inter-operatively from supraspinatus tendons containing small, medium, large and massive full thickness tears (n = 33). Using a novel minimally invasive biopsy technique, paired samples were also collected from supraspinatus tendons containing partial thickness tears either before and seven weeks after subacromial SCI (n = 11), or before and seven weeks after SAD surgery (n = 14). Macroscopically normal subscapularis tendons of older patients (n = 5, mean age = 74.6 years) and supraspinatus tendons of younger patients (n = 16, mean age = 23.3) served as controls. Ultra- and micro-structural characteristics were assessed using atomic force microscopy and polarised light microscopy respectively. . Results. Significant structural differences existed between torn and control groups. Differences were identifiable early in the disease spectrum, and increased with increasing tear size. Neither SCI nor SAD surgery altered the structural properties of partially torn tendons seven weeks after treatment. . Conclusions . These findings may suggest the need for early clinical intervention strategies for torn rotator cuff tendons in order to prevent further degeneration of the tissue as tear size increases. Further work is required to establish the long-term abilities of SCI and SAD to prevent, and even reverse, such degeneration. Cite this article: Bone Joint Res 2014;3:252–61


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 1 | Pages 119 - 123
1 Jan 2009
Benson RT McDonnell SM Rees JL Athanasou NA Carr AJ

We assessed the predictive value of the macroscopic and detailed microscopic appearance of the coracoacromial ligament, subacromial bursa and rotator-cuff tendon in 20 patients undergoing subacromial decompression for impingement in the absence of full-thickness tears of the rotator cuff. Histologically, all specimens had features of degenerative change and oedema in the extracellular matrix. Inflammatory cells were seen, but there was no evidence of chronic inflammation. However, the outcome was not related to cell counts. At three months the mean Oxford shoulder score had improved from 29.2 (20 to 40) to 39.4 (28 to 48) (p < 0.0001) and at six months to 45.5 (36 to 48) (p < 0.0001). At six months, although all patients had improved, the seven patients with a hooked acromion had done so to a less extent than those with a flat or curved acromion judged by their mean Oxford shoulder scores of 43.5 and 46.5 respectively (p = 0.046). All five patients with partial-thickness tears were within this group and demonstrated less improvement than the patients with no tear (mean Oxford shoulder scores 43.2 and 46.4, respectively, p = 0.04). These findings imply that in the presence of a partial-thickness tear subacromial decompression may require additional specific treatment to the rotator cuff if the outcome is to be improved further


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_3 | Pages 51 - 51
1 Apr 2018
Kamatsuki Y Furumatsu T Miyazawa S Fujii M Kodama Y Hino T Ozaki T
Full Access

Purpose. Injuries of the meniscal attachments can lead to meniscal extrusion. We hypothesized that the extent of lateral meniscal extrusion (LME) was associated with the severity of the lateral meniscus posterior root tear (LMPRT). This study aimed to evaluate the relationship between preoperative LME and arthroscopic findings of LMPRT in knees with anterior cruciate ligament (ACL) injury. Methods. Thirty-four knees that had LMPRTs with concomitant ACL injuries on arthroscopy were evaluated. Patients were divided into two groups, partial and complete root tears, via arthroscopic findings at the time of ACL reconstruction. We retrospectively measured preoperative LMEs using magnetic resonance imaging (MRI). Statistical analysis was performed using the Mann-Whitney U-test and Chi-square test. Results. Twenty-three knees had partial LMPRTs (type 1). Complete LMPRTs were observed in 11 knees (type 2, 2 knees; type 3, 2 knees; and type 4, 7 knees). In the partial LMPRT group, the average LME was 0.43±0.78 mm. In the complete LMPRT group, the average extrusion was 1.99±0.62 mm. A significant difference between these groups was observed in the preoperative LMEs (P<0.01). The receiver operating curve analysis identified an optimal cutoff point of 1.05 mm for the preoperative LME. This LME cutoff had a sensitivity of 100% and specificity of 85% for complete LMPRT. Conclusion. This study demonstrated that preoperative LMEs were larger in complete LMPRTs associated with ACL injuries than in partial LMPRTs. Our results suggest that preoperative MRI-detected LME may be a useful indicator for estimating LMPRT severity in knees with ACL injury


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 11 | Pages 1533 - 1538
1 Nov 2006
Meyer DC Lajtai G von Rechenberg B Pfirrmann CWA Gerber C

We released the infraspinatus tendons of six sheep, allowed retraction of the musculotendinous unit over a period of 40 weeks and then performed a repair. We studied retraction of the musculotendinous unit 35 weeks later using CT, MRI and macroscopic dissection.

The tendon was retracted by a mean of 4.7 cm (3.8 to 5.1) 40 weeks after release and remained at a mean of 4.2 cm (3.3 to 4.7) 35 weeks after the repair. Retraction of the muscle was only a mean of 2.7 cm (2.0 to 3.3) and 1.7 cm (1.1 to 2.2) respectively at these two points. Thus, the musculotendinous junction had shifted distally by a mean of 2.5 cm (2.0 to 2.8) relative to the tendon. Sheep muscle showed an ability to compensate for approximately 60% of the tendon retraction in a hitherto unknown fashion. Such retraction may not be a quantitatively reliable indicator of retraction of the muscle and may overestimate the need for elongation of the musculotendinous unit during repair.


The Journal of Bone & Joint Surgery British Volume
Vol. 85-B, Issue 4 | Pages 594 - 599
1 May 2003
Reilly P Amis AA Wallace AL Emery RJH

Differential strain has been proposed to be a causative factor in failure of the supraspinatus tendon. We quantified the strains on the joint and bursal sides of the supraspinatus tendon with increasing load (20 to 200 N) and during 120° of glenohumeral abduction with a constant tensile load (20 to 100 N).

We tested ten fresh frozen cadaver shoulders on a purpose-built rig. Differential variable reluctance extensometers allowed calculation of the strain.

Static loading to 100 N or more increased strains on the joint side significantly more than on the bursal side. During glenohumeral abduction an increasing and significant difference in strain was measured between the joint and bursal sides of the supraspinatus tendon, which reached a maximum of 10.6% at abduction of 120°. The joint side strain of 7.5% reached values which were previously reported to cause failure.

Differential strain causes shearing between the layers of the supraspinatus tendon, which may contribute to the propagation of intratendinous defects that are initiated by high joint side strains.


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_14 | Pages 6 - 6
1 Dec 2022
Roversi G Nusiner F De Filippo F Rizzo A Colosio A Saccomanno M Milano G
Full Access

Recent studies on animal models focused on the effect of preserving tendon remnant of rotator cuff on tendon healing. A positive effect by combining tendon remnant preservation and small bone vents on the greater tuberosity in comparison with standard tendon-to-bone repair has been shown. The purpose of the present clinical study was to evaluate the efficacy of biologic augmentation of arthroscopic rotator cuff repair by maintaining tendon remnant on rotator cuff footprint combined with small bone vents of the greater tuberosity. A retrospective study was conducted. All patients who underwent arthroscopic rotator cuff repair associated with small bone vents (nanofractures) and tendon footprint preservation were considered eligible for the study. Inclusion criteria were: diagnosis of full-thickness rotator cuff tear as diagnosed at preoperative magnetic resonance imaging (MRI) and confirmed at the time of surgery; minimum 24-month of follow-up and availability of post-operative MRI performed not earlier than 6 months after surgery. Exclusion criteria were: partial thickness tears, irreparable tears, capsulo-labral pathologies, calcific tendonitis, gleno-humeral osteoarthritis and/or previous surgery. Primary outcome was the ASES score. Secondary outcomes were: Quick-DASH and WORC scores, and structural integrity of repaired tendons by magnetic resonance imaging (MRI) performed six months after surgery. A paired t-test was used to compare pre- and postoperative clinical outcomes. Subgroup analysis was performed according to tear size. Significance was set at p < 0.05. The study included 29 patients (M:F = 15:14). Mean age (+ SD) of patients was 61.7 + 8.9 years. Mean follow-up was 27.4 ± 2.3 months. Comparison between pre- and postoperative functional scores showed significant clinical improvement (p < 0.001). Subgroup analysis for tear size showed significant differences in the QuickDASH score (0.04). Particularly, a significant difference in the QuickDASH score could be detected between medium and large tears (p=0.008) as well as medium and massive lesions (p=0.04). No differences could be detected between large and massive tears (p= 0.35). Postoperative imaging showed healed tendons in 21 out of 29 (72%) cases. Preservation of tendon remnant combined with small bone vents in the repair of medium-to-massive full-thickness rotator cuff tears provided significant improvement in clinical outcome compared to baseline conditions with complete structural integrity in 72% of the cases


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_14 | Pages 25 - 25
1 Dec 2022
Spina G Napoleone F Mancuso C Gasparini G Mercurio M Familiari FF
Full Access

Magnetic resonance imaging (MRI) is the gold standard for the diagnosis of the pathologies affecting the glenohumeral joint and the rotator cuff diseases. MRI allows to highlight anatomic discontinuities of both muscles and tendons. However, MRI diagnostic accuracy has not proven to be highly sensitive in distinguishing between a partial-thickness tear and a full-thickness rotator cuff tear. The purpose of this study was to determine if MRI under axial traction can be helpful in increasing MRI sensitivity to identify partial-thickness rotator cuff tears. The study included 10 patients (4 males and 6 females) who had clinical examination and MRI suggesting a partial-thickness rotator cuff tear. They were candidates for shoulder arthroscopy because of persistent symptoms after at least three months of conservative treatment. The patients underwent a new MRI (under axial traction: MRI-AT) with a 4-kg weight applied to the affected arm. Then the patients underwent arthroscopy to confirm the diagnosis. Patients with a suspected full-thickness rotator cuff tear were excluded from the study. Patients’ average age was 52.4 years, and the dominant side was affected in 77.7% of the cases. Preoperative Constant-Murley Score was 57. MRI-AT showed that 3 patients were affected by a complete tear of the rotator cuff, 3 patients by a partial-thickness rotator cuff tear and 4 patients had no lesion. The analysis of data showed that: under axial traction the subacromial space increased by 0,2 mm (P value = 0,001075), the superior glenohumeral space decreased by 2.4 mm (P value = 0,07414), the inferior glenohumeral space increased by 0.3 mm (P value = 0,02942), the acromial angle decreased by 1.9° (P value = 0,0002104) and the acromion-glenohumeral angle decreased by 0.3° (P-value = 0,01974). Two experienced evaluators analyzed previous standard MRI and MRI-AT scans in a double-blinded fashion, with inter-rater evaluation of all the images and measures. Intraclass correlation coefficient (ICC) has been utilized to assess the reliability of the measures performed by different operators. ICC always resulted in more than 0.7, showing a high concordance among values in the same group. A comparative evaluation between standard MRI and MRI-AT has been conducted to highlight possible discrepancies and this has been compared to intraoperative findings. Concordance of the values was 89% between standard MRI and MRI-AT and 100% between MRI under axial traction and intraoperative findings. This study showed a high correlation between the diagnosis achieved with MRI-AT and the intraoperative arthroscopic findings. The use of MRI-AT in clinical practice may improve the diagnostic sensitivity of this method to detect a partial-thickness rotator cuff tear


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 39 - 39
4 Apr 2023
Lim W Lie D Chou S Lie H Yew A
Full Access

This study aims to investigate the mechanical properties of a rotator cuff tear repaired with a polypropylene interposition graft in an ovine infraspinatus ex-vivo model. Twenty fresh shoulders from skeletally mature sheep were used in this study. A tear size of 20 mm from the tendon joint was created in the infraspinatus tendon to simulate a large tear in fifteen specimens. This was repaired with a polypropylene mesh used as an interposition graft between the ends of the tendon. Eight specimens were secured with mattress stitches while seven were secured to the remnant tendon on the greater tuberosity side by continuous stitching. Remaining five specimens with an intact tendon served as a control group. All specimens underwent cyclic loading with a universal testing machine to determine the ultimate failure load and gap distance. Gap distance increased with progressive cyclic loading through 3000 cycles for all repaired specimens. Mean gap distance after 3000 cycles for both continuous and mattress groups are 1.7 mm and 4.2 mm respectively (P = .001). Significantly higher mean ultimate failure load was also observed with 549.2 N in the continuous group, 426.6 N in the mattress group and 370 N in the intact group. The use of a polypropylene mesh as an interposition graft for large irreparable rotator cuff tears is biomechanically suitable and results in a robust repair that is comparable to an intact rotator cuff tendon. When paired with a continuous suturing technique, it demonstrates significantly resultant superior biomechanical properties that may potentially reduce re-tear rates after repairing large or massive rotator cuff tears


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 84 - 84
11 Apr 2023
Amirouche F Leonardo Diaz R Koh J Lin C Motisi M Mayo B Tafur J Hutchinson M
Full Access

Postoperative knee stability is critical in determining the success after reconstruction; however, only posterior and anterior stability is assessed. Therefore, this study investigates medial and lateral rotational knee laxity changes after partial and complete PCL tear and after PCL allograft reconstruction. The extending Lachman test assessed knee instability in six fresh-frozen human cadaveric knees. Tibia rotation was measured for the native knee, after partial PCLT (pPCLT), after full PCLT (fPCLT), and then after PCLR tensioned at 30° and 90°. In addition, tests were performed for the medial and lateral sides. The tibia was pulled with 130N using a digital force gauge. A compression load of 50N was applied to the joint on the universal testing machine (MTS Systems) to induce contact. Three-dimensional tibial rotation was measured using a motion capture system (Optotrak). On average, the tibia rotation increased by 33%-42% after partial PCL tear, and by 62%-75% after full PCL tear when compared to the intact case. After PCL reconstruction, the medial tibia rotation decreased by 33% and 37% compared to the fPCL tear in the case that the allograft was tensioned at 30° and 90° of flexion, respectively. Similarly, lateral tibial rotation decreased by 15% and 2% for allograft tensioned at 30° and 90° of flexion respectively, compared to the full tear. Rotational decreases were statistically significant (p<0.005) at the lateral pulling after tensioning the allograft at 90°. PCLR with the graft tensioned at 30° and 90° both reduced medial knee laxity after PCLT. These results suggest that while both tensioning angles restored medial knee stability, tensioning the Achilles graft at 30° of knee flexion was more effective in restoring lateral knee stability throughout the range of motion from full extension to 90° flexion, offering a closer biomechanical resemblance to native knee function


To analyse the efficacy and safety of cellular therapy utilizing Mesenchymal Stromal Cells (MSCs) in the management of rotator cuff(RC) tears from clinical studies available in the literature. We conducted independent and duplicate electronic database searches including PubMed, Embase, Web of Science, and Cochrane Library on August 2021 for studies analyzing the efficacy and safety of cellular therapy (CT) utilizing MSCs in the management of RC tears. VAS for pain, ASES Score, DASH Score, Constant Score, radiological assessment of healing and complications and adverse events were the outcomes analyzed. Analysis was performed in R-platform using OpenMeta [Analyst] software. RESULTS:. 6 studies involving 238 patients were included for analysis. We noted a significant reduction in VAS score for pain at 3 months (WMD=-2.234,p<0.001) and 6 months (WMD=-3.078,p<0.001) with the use of CT. Concerning functional outcomes, utilization of CT produced a significant short-term improvement in the ASES score (WMD=17.090,p<0.001) and significant benefit in functional scores such as Constant score (WMD=0.833,p=0.760) at long-term. Moreover, we also observed a significantly improved radiological tendon healing during the long-term follow-up (OR=3.252,p=0.059). We also noted a significant reduction in the retear rate upon utilization of CT in RC tears both at short- (OR=0.079,p=0.032) and long-term (OR=0.434,p=0.027). We did not observe any significant increase in the adverse events as compared with the control group (OR=0.876,p=0.869). Utilization of CT in RC tear is safe and it significantly reduced pain severity, improved functional outcome, enhanced radiological tendon healing, and mitigated retear rates at short- and long-term follow-up


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 9 - 9
17 Apr 2023
Mortimer J Tamaddon M Liu C
Full Access

Rotator cuff tears are common, with failure rates of up to 94% for large and massive tears. 1. For such tears, reattachment of the musculotendinous unit back to bone is problematic, and any possible tendon-bone repair heals through scar tissue rather than the specially adapted native enthesis. We aim to develop and characterise a novel soft-hard tissue connector device, specific to repairing/bridging the tendon-bone injury in significant rotator cuff tears, employing decellularised animal bone partially demineralised at one end for soft tissue continuation. Optimisation samples of 15×10×5mm. 3. , trialled as separate cancellous and cortical bone samples, were cut from porcine femoral condyles and shafts, respectively. Samples underwent 1-week progressive stepwise decellularisation and a partial demineralisation process of half wax embedding and acid bathing. Characterisations were performed histologically for the presence/absence of cellular staining in both peripheral and central tissue areas (n=3 for each cortical/cancellous, test/PBS control and peripheral/central group), and with BioDent reference point indentation (RPI) for pre- and post-processing mechanical properties. Histology revealed absent cellular staining in peripheral and central cancellous samples, whilst reduced in cortical samples compared to controls. Cancellous samples decreased in wet mass after decellularisation by 45.3% (p<0.001). RPI measurements associated with toughness (total indentation depth, indentation depth increase) and elasticity (1st cycle unloading slope) showed no consistent changes after decellularisation. X-rays confirmed half wax embedding provided predictable control of the mineralised-demineralised interface position. Initial optimisation trials show proof-of-concept of a soft-hard hybrid scaffold as an immune compatible xenograft for irreparable rotator cuff tears. Decellularisation did not appreciably affect mechanical properties, and further biological, structural and chemical characterisations are underway to assess validity before in vivo animal trials and potential clinical translation


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 59 - 59
17 Apr 2023
Pounds G Liu A Jones A Jennings L
Full Access

The aim of this work was to develop a novel, accessible and low-cost method, which is sufficient to measure changes in meniscal position in a whole-knee joint model performing dynamic motion in a knee simulator. An optical tracking method using motion markers, MATLAB (MATLAB, The MathWorks Inc.) and a miniature camera system (Raspberry Pi, UK) was developed. Method feasibility was assessed on porcine whole joint knee samples (n = 4) dissected and cemented to be used in the simulator (1). Markers were placed on three regions (medial, posterior, anterior) of the medial meniscus with corresponding reference markers on the tibial plateau, so the relative meniscal position could be calculated. The Leeds high kinematics gait profile scaled to the parameters of a pig (1, 2) was driven in displacement control at 0.5 Hz. Videos were recorded at cycle-3 and cycle-50. Conditions tested were the capsule retained (intact), capsule removed and a medial posterior root tear. Mean relative displacement values were taken at time-points relating to the peaks of the axial force and flexion-extension gait inputs, as well as the range between the maximum and minimum values. A one-way ANOVA followed by Tukey post hoc analysis were used to assess differences (p = 0.05). The method was able to measure relative meniscal displacement for all three meniscal regions. The medial region showed the greatest difference between the conditions. A significant increase (p < 0.05) for the root tear condition was found at 0.28s and 0.90s (axial load peaks) during cycle-3. Mean relative displacement for the root tear condition decreased by 0.29 mm between cycle-3 and cycle-50 at the 0.28s time-point. No statistically significant differences were found when ranges were compared at cycle-3 and cycle-50. The method was sensitive to measure a substantial difference in medial-lateral relative displacement between an intact and a torn state. Meniscus extrusion was detected for the root tear condition throughout test duration. Further work will progress onto human specimens and apply an intervention condition


We performed this systematic overview on the overlapping meta-analyses that analyzed autologous platelet-rich plasma (PRP) as an adjuvant in the repair of rotator cuff tears and identify the studies which provide the current best evidence on this subject and generate recommendations for the same. We conducted independent and duplicate electronic database searches in PubMed, Web of Science, Scopus, Embase, Cochrane Database of Systematic Reviews, and the Database of Abstracts of Reviews of Effects on September 8, 2021, to identify meta-analyses that analyzed the efficacy of PRP as an adjuvant in the repair of rotator cuff tears. Methodological quality assessment was made using Oxford Levels of Evidence, AMSTAR scoring, and AMSTAR 2 grades and used the Jadad decision algorithm to generate recommendations. 20 meta-analyses fulfilling the eligibility criteria were included. The AMSTAR scores of the included studies varied from 6–10 (mean:7.9). All the included studies had critically low reliability in their summary of results due to their methodological flaws according to AMSTAR 2 grades. The initial size of the tear and type of repair performed do not seem to affect the benefit of PRPs. Among the different preparations used, leucocyte poor (LP)-PRP possibly offers the greatest benefit as a biological augment in these situations. Based on this systematic overview, we give a Level II recommendation that intra-operative use of PRPs at the bone-tendon interface can augment the healing rate, reduce re-tears, enhance the functional outcomes and mitigate pain in patients undergoing arthroscopic rotator cuff repair


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 35 - 35
4 Apr 2023
Teo B Yew A Tan M Chou S Lie D
Full Access

This study aims to compare the biomechanical properties of the “Double Lasso-Loop” suture anchor (DLSA) technique with the commonly performed interference screw (IS) technique in an ex vivo ovine model. Fourteen fresh sheep shoulder specimens were used in this study. Dissection was performed leaving only the biceps muscle attached to the humerus and proximal radius before sharply incised to simulate long head of biceps tendon (LHBT) tear. Repair of the LHBT tear was performed on all specimens using either DSLA or IS technique. Cyclical loading of 500 cycles followed by load to failure was performed on all specimens. Tendon displacement due to the cyclical loading at every 100 cycles as well as the maximum load at failure were recorded and analysed. Stiffness was also calculated from the load displacement graph during load to failure testing. No statistically significant difference in tendon displacement was observed from 200 to 500 cycles. Statistically significant higher stiffness was observed in IS when compared with DSLA (P = .005). Similarly, IS demonstrated significantly higher ultimate failure load as compared with DSLA (P = .001). Modes of failure observed for DSLA was mostly due to suture failure (7/8) and anchor pull-out (1/8) while IS resulted in mostly LHBT (4/6) or biceps (2/6) tears. DSLA failure load were compared with previous studies and similar results were noted. After cyclical loading, tendon displacement in DLSA technique was not significantly different from IS technique. Despite the higher failure loads associated with IS techniques in the present study, absolute peak load characteristics of DLSA were similar to previous studies. Hence, DLSA technique can be considered as a suitable alternative to IS fixation for biceps tenodesis


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 29 - 29
4 Apr 2023
Bolam S Konar S Zhu M Workman J Lim K Woodfield T Monk P Coleman B Cornish J Munro J Musson D
Full Access

Re-rupture rates after rotator cuff repair remain high because of inadequate biological healing at the tendon-bone interface. Single-growth factor therapies to augment healing at the enthesis have so far yielded inconsistent results. An emerging approach is to combine multiple growth factors over a spatiotemporal distribution that mimics normal healing. We propose a novel combination treatment of insulin-like growth factor 1 (IGF-1), transforming growth factor β1 (TGF-β1) and parathyroid hormone (PTH) incorporated into a controlled-release tyraminated poly-vinyl-alcohol hydrogel to improve healing after rotator cuff repair. We aimed to evaluate this growth factor treatment in a rat chronic rotator cuff tear model. A total of 30 male Sprague-Dawley rats underwent unilateral supraspinatus tenotomy. Delayed rotator cuff repairs were then performed after 3 weeks, to allow tendon degeneration that resembles the human clinical scenario. Animals were randomly assigned to: [1] a control group with repair alone; or [2] a treatment group in which the hydrogel was applied at the repair site. All animals were euthanized 12 weeks after rotator cuff surgery and the explanted shoulders were analyzed for biomechanical strength and histological quality of healing at the repair site. In the treatment group had significantly higher stress at failure (73% improvement, P=0.003) and Young's modulus (56% improvement, P=0.028) compared to the control group. Histological assessment revealed improved healing with significantly higher overall histological scores (10.1 of 15 vs 6.55 of 15, P=0.032), and lower inflammation and vascularity. This novel combination growth factor treatment improved the quality of healing and strength of the repaired enthesis in a chronic rotator cuff tear model. Further optimization and tailoring of the growth factors hydrogel is required prior to consideration for clinical use in the treatment of rotator cuff tears. This novel treatment approach holds promise for improving biological healing of this clinically challenging problem