The subject of noise in the operating theatre was recognized as early as 1972 and has been compared to noise levels on a busy highway. While noise-induced hearing loss in orthopaedic surgery specifically has been recognized as early as the 1990s, it remains poorly studied. As a result, there has been renewed focus in this occupational hazard. Noise level is typically measured in decibels (dB), whereas noise adjusted for human perception uses A-weighted sound levels and is expressed in dBA. Mean operating theatre noise levels range between 51 and 75 dBA, with peak levels between 80 and 119 dBA. The greatest sources of noise emanate from powered surgical instruments, which can exceed levels as high as 140 dBA. Newer technology, such as robotic-assisted systems, contribute a potential new source of noise. This article is a narrative review of the deleterious effects of prolonged noise exposure, including noise-induced hearing loss in the operating theatre team and the patient, intraoperative miscommunication, and increased cognitive load and stress, all of which impact the surgical team’s overall performance. Interventions to mitigate the effects of noise exposure include the use of quieter surgical equipment, the implementation of sound-absorbing personal protective equipment, or changes in communication protocols. Future research endeavours should use advanced research methods and embrace technological innovations to proactively mitigate the effects of operating theatre noise. Cite this article:
Periprosthetic femoral fractures are increasing in incidence, and typically occur in frail elderly patients. They are similar to pathological fractures in many ways. The aims of treatment are the same, including 'getting it right first time' with a single operation, which allows immediate unrestricted weightbearing, with a low risk of complications, and one that avoids the creation of stress risers locally that may predispose to further peri-implant fracture. The surgical approach to these fractures, the associated soft-tissue handling, and exposure of the fracture are key elements in minimizing the high rate of complications. This annotation describes the approaches to the femur that can be used to facilitate the surgical management of peri- and interprosthetic fractures of the femur at all levels using either modern methods of fixation or revision arthroplasty. Cite this article:
Despite being one of the most common orthopaedic
operations, it is still not known how many arthroscopies of the knee
must be performed during training in order to develop the skills
required to become a Consultant. A total of 54 subjects were divided
into five groups according to clinical experience: Novices (n =
10), Junior trainees (n = 10), Registrars (n = 18), Fellows (n =
10) and Consultants (n = 6). After viewing an instructional presentation,
each subject performed a simple diagnostic arthroscopy of the knee
on a simulator with visualisation and probing of ten anatomical
landmarks. Performance was assessed using a validated global rating
scale (GRS). Comparisons were made against clinical experience measured
by the number of arthroscopies which had been undertaken, and ROC
curve analysis was used to determine the number of procedures needed
to perform at the level of the Consultants. There were marked differences between the groups. There was significant
improvement in performance with increasing experience (p <
0.05). ROC curve analysis identified that approximately 170 procedures
were required to achieve the level of skills of a Consultant. We suggest that this approach to identify what represents the
level of surgical skills of a Consultant should be used more widely
so that standards of training are maintained through the development
of an evidenced-based curriculum. Cite this article: