Advertisement for orthosearch.org.uk
Results 1 - 20 of 85
Results per page:
Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 47 - 47
2 Jan 2024
Grammens J Pereira LF Danckaers F Vanlommel J Van Haver A Verdonk P Sijbers J
Full Access

Currently implemented accuracy metrics in open-source libraries for segmentation by supervised machine learning are typically one-dimensional scores [1]. While extremely relevant to evaluate applicability in clinics, anatomical location of segmentation errors is often neglected. This study aims to include the three-dimensional (3D) spatial information in the development of a novel framework for segmentation accuracy evaluation and comparison between different methods. Predicted and ground truth (manually segmented) segmentation masks are meshed into 3D surfaces. A template mesh of the same anatomical structure is then registered to all ground truth 3D surfaces. This ensures all surface points on the ground truth meshes to be in the same anatomically homologous order. Next, point-wise surface deviations between the registered ground truth mesh and the meshed segmentation prediction are calculated and allow for color plotting of point-wise descriptive statistics. Statistical parametric mapping includes point-wise false discovery rate (FDR) adjusted p-values (also referred to as q-values). The framework reads volumetric image data containing the segmentation masks of both ground truth and segmentation prediction. 3D color plots containing descriptive statistics (mean absolute value, maximal value,…) on point-wise segmentation errors are rendered. As an example, we compared segmentation results of nnUNet [2], UNet++ [3] and UNETR [4] by visualizing the mean absolute error (surface deviation from ground truth) as a color plot on the 3D model of bone and cartilage of the mean distal femur. A novel framework to evaluate segmentation accuracy is presented. Output includes anatomical information on the segmentation errors, as well as point-wise comparative statistics on different segmentation algorithms. Clearly, this allows for a better informed decision-making process when selecting the best algorithm for a specific clinical application


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 122 - 122
11 Apr 2023
Chen L Zheng M Chen Z Peng Y Jones C Graves S Chen P Ruan R Papadimitriou J Carey-Smith R Leys T Mitchell C Huang Y Wood D Bulsara M Zheng M
Full Access

To determine the risk of total knee replacement (TKR) for primary osteoarthritis (OA) associated with overweight/obesity in the Australian population. This population-based study analyzed 191,723 cases of TKR collected by the Australian Orthopaedic Association National Joint Registry and population data from the Australian Bureau of Statistics. The time-trend change in incidence of TKR relating to BMI was assessed between 2015-2018. The influence of obesity on the incidence of TKR in different age and gender groups was determined. The population attributable fraction (PAF) was then calculated to estimate the effect of obesity reduction on TKR incidence. The greatest increase in incidence of TKR was seen in patients from obese class III. The incidence rate ratio for having a TKR for obesity class III was 28.683 at those aged 18-54 years but was 2.029 at those aged >75 years. Females in obesity class III were 1.7 times more likely to undergo TKR compared to similarly classified males. The PAFs of TKR associated with overweight or obesity was 35%, estimating 12,156 cases of TKR attributable to obesity in 2018. The proportion of TKRs could be reduced by 20% if overweight and obese population move down one category. Obesity has resulted in a significant increase in the incidence of TKR in the youngest population in Australia. The impact of obesity is greatest in the young and the female population. Effective strategies to reduce the national obese population could potentially reduce 35% of the TKR, with over 10,000 cases being avoided


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 99 - 99
11 Apr 2023
Domingues I Cunha R Domingues L Silva E Carvalho S Lavareda G Carvalho R
Full Access

The covid-19 pandemic had a great impact in the daily clinical and surgical practice. Concerning patients with a femoral neck fracture, there is the need of a negative Sars-CoV-2 test or an established isolation period for the positive cases, pre-operatively. The goal of this study was to evaluate the impact of the pandemic in the management of patients with femoral neck fractures, who were submitted to surgical treatment with hemiarthroplasty, in our hospital. A retrospective, observational study was performed, analysing the patients with femoral neck fractures submitted to hip hemiarthroplasty, during the years 2019 (before the pandemic) and 2020 (first year of the pandemic). We analysed the first 5 patients operated in each month of the mentioned years. We analysed 56 and 60 patients submitted to surgery in the years 2019 and 2020, respectively. The inpatient days were, in average, 14.1 and 13.1. Patients were operated, in average, 3.0 and 3.8 days after admission (corrected to 2.5 and 3.6 days if the time of discontinuation of anticoagulants or antiplatelets needed before surgery is deducted). There were peri-operative complications in 53.6% and 46.7% of the patients, in 2019 and 2020 respectively. The most common complication in both groups was a low postoperative haemoglobin level needing red blood cell transfusion. One-year postoperative mortality rate was 17.9% and 13.3%, respectively. Despite the changes triggered by the new pandemic, there was an overall maintenance of the quality of the management of these patients, with only a slight increase in the interval between admission and surgery. Some of the remaining variables even showed an improvement when comparing the two groups of patients. Nevertheless, it is important to mention that there were patients infected with Covid-19 who died before being submitted to surgery, therefore not being present in these statistics


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 4 - 4
2 Jan 2024
Kucko N Sage K Delawi D Hoebink E Kempen D Van Susante J de Bruijn J Kruyt M
Full Access

Pseudoarthrosis after spinal fusion is an important complication leading to revision spine surgeries. Iliac Crest Bone Graft is considered the gold standard, but with limited availability and associated co-morbidities, spine surgeons often utilize alternative bone grafts. Determine the non-inferiority of a novel submicron-sized needle-shaped surface biphasic calcium phosphate (BCP<µm) as compared to autograft in instrumented posterolateral spinal fusion. Adult patients indicated for instrumented posterolateral spinal fusion of one to six levels from T10-S2 were enrolled at five participating centers. After instrumentation and preparation of the bone bed, the randomized allocation side of the graft type was disclosed. One side was grafted with 10cc of autograft per level containing a minimum of 50% iliac crest bone. The other side was grafted with 10cc of BCP<µm granules standalone (without autograft or bone marrow aspirate). In total, 71 levels were treated. Prospective follow-up included adverse events, Oswestry Disability Index (ODI), and a fine-cut Computerized Tomography (CT) at one year. Fusion was systematically scored as fused or not fused per level per side by two spine surgeons blinded for the procedure. The first fifty patients enrolled are included in this analysis (mean age: 57 years; 60% female and 40% male). The diagnoses included deformity (56%), structural instability (28%), and instability from decompression (20%). The fusion rate determined by CT for BCP<μm was 76.1%, which compared favorably to the autograft fusion rate of 43.7%. Statistical analysis through binomial modeling showed that the odds of fusion of BCP<μm was 2.54 times higher than that of autograft. 14% of patients experienced a procedure or possible device-related severe adverse event and there were four reoperations. Oswestry Disability Index (ODI) score decreased from a mean of 46.0 (±15.0) to a mean of 31.7 (±16.9), and 52.4% of patients improved with at least 15-point decrease. This data, aiming to determine non-inferiority of standalone BCP<μm as compared to autograft for posterior spinal fusions, is promising. Ongoing studies to increase the power of the statistics with more patients are forthcoming


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 63 - 63
4 Apr 2023
Rashid M Cunningham L Walton M Monga P Bale S Trail I
Full Access

The purpose of this study is to report the clinical and radiological outcomes of patients undergoing primary or revision reverse total shoulder arthroplasty using custom 3D printed components to manage severe glenoid bone loss with a minimum of 2-year follow-up. After ethical approval (reference: 17/YH/0318), patients were identified and invited to participate in this observational study. Inclusion criteria included: 1) severe glenoid bone loss necessitating the need for custom implants; 2) patients with definitive glenoid and humeral components implanted more than 2 years prior; 3) ability to comply with patient reported outcome questionnaires. After seeking consent, included patients underwent clinical assessment utilising the Oxford Shoulder Score (OSS), Constant-Murley score, American Shoulder and Elbow Society Score (ASES), and quick Disabilities of the Arm, Shoulder, and Hand Score (quickDASH). Radiographic assessment included AP and axial projections. Patients were invited to attend a CT scan to confirm osseointegration. Statistical analysis utilised included descriptive statistics (mean and standard deviation) and paired t test for parametric data. 3 patients had revision surgery prior to the 2-year follow-up. Of these, 2/3 retained their custom glenoid components. 4 patients declined to participate. 5 patients were deceased at the time of commencement of the study. 21 patients were included in this analysis. The mean follow-up was 36.1 months from surgery (range 22–60.2 months). OSS improved from a mean 16 (SD 9.1) to 36 (SD 11.5) (p < 0.001). Constant-Murley score improved from mean 9 (SD 9.2) to 50 (SD 16.4) (p < 0.001). QuickDASH improved from mean 67 (SD 24) to 26 (SD 27.2) (p = 0.004). ASES improved from mean 28 (SD 24.8) to 70 (SD 23.9) (p = 0.007). Radiographic evaluation demonstrated good osseointegration in all 21 included patients. The utility of custom 3D-printed components for managing severe glenoid bone loss in primary and revision reverse total shoulder arthroplasty yields significant clinical improvements in this complex patient cohort


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 52 - 52
17 Apr 2023
Abram S Sabah S Alvand A Price A
Full Access

Revision knee arthroplasty is a complex procedure with the number and cost of knee revision procedures performed per year expected to rise. Few studies have examined adverse events following revision arthroplasty. The objective of this study was to determine rates of serious adverse events in patients undergoing revision knee arthroplasty with consideration of the indication for revision (urgent versus elective indications) and to compare these with primary arthroplasty and re-revision arthroplasty. Patients undergoing primary knee arthroplasty were identified in the UK Hospital Episode Statistics. Subsequent revision and re-revision arthroplasty procedures in the same patients and same knee were identified. The primary outcome was 90-day mortality and a logistic regression model was used to investigate factors associated with 90-day mortality and secondary adverse outcomes including infection (undergoing surgery), pulmonary embolism, myocardial infarction, stroke. Urgent indications for revision arthroplasty were defined as infection or fracture, and all other indications were included in the elective indications cohort. 939,021 primary knee arthroplasty cases were included of which 40,854 underwent subsequent revision arthroplasty, and 9,100 underwent re-revision arthroplasty. Revision surgery for elective indications was associated with a 90-day rate of mortality of 0.44% (135/30,826; 95% CI 0.37-0.52) which was comparable to primary knee arthroplasty (0.46%; 4,292/939,021; 95% CI 0.44-0.47). Revision arthroplasty for infection, however, was associated with a much higher mortality of 2.04% (184/9037; 95% CI 1.75-2.35; odds ratio [OR] 3.54; 95% CI 2.81-4.46), as was revision for periprosthetic fracture at 5.25% (52/991; 95% CI 3.94-6.82; OR 6.23; 95% CI 4.39-8.85). Higher rates of pulmonary embolism, myocardial infarction, and stroke were also observed in the infection and fracture cohort. These findings highlight the burden of complications associated with revision knee arthroplasty. They will inform shared decision-making for patients considering revision knee arthroplasty for elective indications. Patients presenting with infection of a knee arthroplasty or a periprosthetic fracture are at very high risk of adverse events. It is important that acute hospital services and tertiary referral centres caring for these patients are appropriately supported to ensure appropriate urgency and an anticipation for increased care requirements


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 133 - 133
2 Jan 2024
Graziani G
Full Access

Decreasing the chance of local relapse or infection after surgical excision of bone metastases is a main goals in orthopedic oncology. Indeed, bone metastases have high incidence rate (up to 75%) and important cross-relations with infection and bone regeneration. Even in patients with advanced cancer, bone gaps resulting from tumor excision must be filled with bone substitutes. Functionalization of these substitutes with antitumor and antibacterial compounds could constitute a promising approach to overcome infection and tumor at one same time. Here, for the first time, we propose the use of nanostructured zinc-bone apatite coatings having antitumor and antimicrobial efficacy. The coatings are obtained by Ionized Jet Deposition from composite targets of zinc and bovine-derived bone apatite. Antibacterial and antibiofilm efficacy of the coatings is demonstrated in vitro against S. Aureus and E. Coli. Anti-tumor efficacy is investigated against MDA- MB-231 cells and biocompatibility is assessed on L929 and MSCs. A microfluidic based approach is used to select the optimal concentration of zinc to be used to obtain antitumor efficacy and avoid cytotoxicity, exploiting a custom gradient generator microfluidic device, specifically designed for the experiments. Then, coatings capable of releasing the desired amount of active compounds are manufactured. Films morphology, composition and ion-release are studies by FEG- SEM/EDS, XRD and ICP. Efficacy and biocompatibility of the coatings are verified by investigating MDA, MSCs and L929 viability and morphology by Alamar Blue, Live/Dead Assay and FEG-SEM at different timepoints. Statistical analysis is performed by SPSS/PC + Statistics TM 25.0 software, one-way ANOVA and post-hoc Sheffe? test. Data are reported as Mean ± standard Deviation at a significance level of p <0.05. Results and Discussion. Coatings have a nanostructured surface morphology and a composition mimicking the target. They permit sustained zinc release for over 14 days in medium. Thanks to these characteristics, they show high antibacterial ability (inhibition of bacteria viability and adhesion to substrate) against both the gram + and gram – strain. The gradient generator microfluidic device permits a fine selection of the concentration of zinc to be used, with many potential perspectives for the design of biomaterials. For the first time, we show that zinc and zinc-based coatings have a selective efficacy against MDA cells. Upon mixing with bone apatite, the efficacy is maintained and cytotoxicity is avoided. For the first time, new antibacterial metal-based films are proposed for addressing bone metastases and infection at one same time. At the same time, a new approach is proposed for the design of the coatings, based on a microfluidic approach. We demonstrated the efficacy of Zn against the MDA-MB-231 cells, characterized for their ability to form bone metastases in vivo, and the possibility to use nanostructured metallic coatings against bone tumors. At the same time, we show that the gradient-generator approach is promising for the design of antitumor biomaterials. Efficacy of Zn films must be verified in vivo, but the dual-efficacy coatings appear promising for orthopedic applications


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 21 - 21
17 Nov 2023
Matar H van Duren B Berber R Bloch B James P Manktelow A
Full Access

Abstract. Objectives. Total hip replacement (THR) is one of the most successful and cost-effective interventions in orthopaedic surgery. Dislocation is a debilitating complication of THR and managing an unstable THR constitutes a significant clinical challenge. Stability in THR is multifactorial and is influenced by surgical, patient and implant related factors. It is established that larger diameter femoral heads have a wider impingement-free range of movement and an increase in jump distance, both of which are relevant in reducing the risk of dislocation. However, they can generate higher frictional torque which has led to concerns related to increased wear and loosening. Furthermore, the potential for taper corrosion or trunnionosis is also a potential concern with larger femoral heads, particularly those made from cobalt-chrome. These concerns have meant there is hesitancy among surgeons to use larger sized heads. This study presents the comparison of clinical outcomes for different head sizes (28mm, 32mm and 36mm) in primary THR for 10,104 hips in a single centre. Methods. A retrospective study of all consecutive patients who underwent primary THR at our institution between 1st April 2003 and 31st Dec 2019 was undertaken. Institutional approval for this study was obtained. Demographic and surgical data were collected. The primary outcome measures were all-cause revision, revision for dislocation, and all-cause revision excluding dislocation. Continuous descriptive statistics used means, median values, ranges, and 95% confidence intervals where appropriate. Kaplan-Meier survival curves were used to estimate time to revision. Cox proportional hazard regression analysis was used to compare revision rates between the femoral head size groups. Adjustments were made for age at surgery, gender, primary diagnosis, ASA score, articulation type, and fixation method. Results. 10,104 primary THRs were included; median age 68.6 years with 61.5% females. A posterior approach was performed in 71.6%. There were 3,295 hips with 28 mm heads (32.6%), 4,858 (48.1%) with 32 mm heads and 1,951 (19.3%) with 36 mm heads. Overall rate of revision was 1.7% with the lowest rate recorded for the 36mm group (2.7% vs. 1.3% vs. 1.1%). Cox regression analysis showed a decreased risk of all-cause revision for 32mm & 36mm head sizes as compared to 28mm; this was statistically significant for the 32mm group (p = 0.01). Risk of revision for dislocation was significantly reduced in both 32mm (p = 0.03) and 36mm (p = 0.03) head sizes. Analysis of all cause revision excluding dislocation showed no significant differences between head sizes. Conclusion. There was a significantly reduced risk of revision for all causes, but particularly revision for dislocation with larger head sizes (36mm & 32mm vs. 28mm). Concerns regarding increased risk of early revision for aseptic loosening, polyethylene wear or taper corrosion with larger heads appear to be unfounded in this cohort of 10,104 patients with a mean of 6.0-year follow-up. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 58 - 58
17 Nov 2023
Huang D Buchanan F Clarke S
Full Access

Abstract. Objectives. Osteoporotic fractures tend to be more challenging than fractures in healthy bone and the efficacy of metal screw fixation decreases with decreasing bone mineral density making it more difficult for such screws to gain purchase. This leads to increased complication rates such as malunion, non-union and implant failure (1). Bioresorbable polymer devices have seen clinical success in fracture fixation and are a promising alternative for metallic devices but are rarely used in the osteoporotic population. To address this, we are developing a system that may allow osteoporotic patients to avail of bioresorbable devices (2) but it is important to establish if patients have any reservations about having a plastic resorbable device instead of a metal one. Therefore the aim of this study was to explore the acceptability of bioresorbable fracture fixation devices to people with osteoporosis. Methods. A cross sectional descriptive study was conducted in a UK wide population using convenience sampling. An online survey comprising nine survey questions and nine demographic questions was developed in Microsoft Teams and tested for face validity in a small pilot study (n=6). Following amendments and ethical approval, the survey was distributed by the Royal Osteoporosis Society on their website and social media platforms. People were invited to take part if they lived in the UK, were over 18 years old and had been diagnosed with osteoporosis. The survey was open for three weeks in May 2023. Responses were analysed using descriptive statistics. Results. There were 112 responses. Eight participants had not been diagnosed with osteoporosis and therefore did not meet the study criteria. Of the remaining 104, 102 were female and 2 were male and 102 were white (2 chose not to disclose their ethnicity). The majority of participants were aged 55–64 (34.6%) or 65–74 (37.5%), were college/university educated (38.5%) and had previously sustained a fragility fracture (52.9%). Only 3.9% of participants had heard of bioresorbable fracture fixation devices compared to 62.5% for metal devices. Most people were unsure if they would trust one type of device over the other (58.7%) and would ask for more information if their surgeon were to suggest using a bioresorbable device to fix their fracture (61.5%). The most commonly reported concerns were about device safety and efficacy: toxicity of the degradation products and the device breaking down too early before the fracture had healed. Two participants cited environmental concerns about increased use of plastics as a reason they would decline such a device. Conclusions. As expected, participants had little to no knowledge of bioresorbable polymer fixation devices. In general, they were willing to be guided by their surgeon but would require supporting information on the safety and efficacy of their long-term use. The results of this study show that it will be important to have relevant and understandable information to give patients when recommending these devices as treatments to ensure and support a shared-decision approach to patient care. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_14 | Pages 13 - 13
1 Dec 2022
Barone A Cofano E Zappia A Natale M Gasparini G Mercurio M Familiari F
Full Access

The risk of falls in patients undergoing orthopedic procedures is particularly significant in terms of health and socioeconomic effects. The literature analyzed closely this risk following procedures performed on the lower limb, but the implications following procedures on the upper limb remain to be investigated. Interestingly, it is not clear whether the increased risk of falling in patients undergoing shoulder surgery is due to preexisting risk factors at surgery or postoperative risk factors, such as anesthesiologic effects, opioid medications used for pain control, or brace use. Only one prospective study examined gait and fall risk in patients using a shoulder abduction brace (SAB) after shoulder surgery, revealing that the brace adversely affected gait kinematics with an increase in the risk of falls. The main purpose of the study was to investigate the influence of SAB on gait parameters in patients undergoing shoulder surgery. Patients undergoing elective shoulder surgery (arthroscopic rotator cuff repair, reverse total shoulder arthroplasty, and Latarjet procedure), who used a 15° SAB in the postoperative period, were included. Conversely, patients age > 65 years old, with impaired lower extremity function (e.g., fracture sequelae, dysmorphism, severe osteo-articular pathology), central and peripheral nervous system pathologies, and cardiac/respiratory/vascular insufficiency were excluded. Participants underwent kinematic analysis at four different assessment times: preoperative (T0), 24 hours after surgery (T1), 1 week after surgery (T2), and 1 week after SAB removal (T3). The tests used for kinematic assessment were the Timed Up and Go (TUG) and the 10-meter test (10MWT), both of which examine functional mobility. Agility and balance were assessed by a TUG test (transitions from sitting to standing and vice versa, walking phase, turn-around), while gait (test time, cadence, speed, and pelvic symmetry) was evaluated by the 10MWT. Gait and functional mobility parameters during 10MWT and TUG tests were assessed using the BTS G-Walk sensor (G-Sensor 2). One-way ANOVA for repeated measures was conducted to detect the effects of SAB on gait parameters and functional mobility over time. Statistical analysis was performed with IBM®SPSS statistics software version 23.0 (SPSS Inc., Chicago, IL, USA), with the significant level set at p<0.05. 83% of the participants had surgery on the right upper limb. A main effect of time for the time of execution (duration) (p=0.01, η2=0.148), speed (p<0.01, η2=0.136), cadence (p<0.01, η2=0.129) and propulsion-right (R) (p<0.05, η2=0.105) and left (L) (p<0.01, η2=0.155) in the 10MWT was found. In the 10MWT, the running time at T1 (9.6±1.6s) was found to be significantly longer than at T2 (9.1±1.3s, p<0.05) and at T3 (9.0±1.3s, p=0.02). Cadence at T1 (109.7±10.9steps/min) was significantly lower than at T2 (114.3 ±9.3steps/min, p<0.01) and T3 (114.3±9.3steps/min, p=0.02). Velocity at T1 (1.1±0.31m/s) was significantly lower than at T2 (1.2± 0.21m/s, p<0.05). No difference was found in the pelvis symmetry index. No significant differences were found during the TUG test except for the final rotation phase with T2 value significantly greater than T3 (1.6±0.4s vs 1.4±0.3s, p<0.05). No statistically significant differences were found between T0 and T2 and between T0 and T3 in any of the parameters analyzed. Propulsion-R was significantly higher at T3 than T1 (p<0.01), whereas propulsion-L was significantly lower at T1 than T0 (p<0.05) and significantly higher at T2 and T3 than T1 (p<0.01). Specifically, the final turning phase was significantly higher at T2 than T3 (p<0.01); no significant differences were found for the duration, sit to stand, mid-turning and stand to sit phases. The results demonstrated that the use of the abduction brace affects functional mobility 24 hours after shoulder surgery but no effects were reported at longer term observations


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 27 - 27
1 Dec 2021
Edwards T Donovan R Whitehouse M
Full Access

Abstract. Objectives. Intra-articular corticosteroid injections (IACIs) are a well-established non-surgical treatment for the symptoms of osteoarthritis (OA), which can provide short-term improvements in pain, disability and quality of life (QoL). Many patients receive recurrent IACIs as temporary relief of their symptoms. Longer-term outcomes for recurrent IACIs remain less well-researched. This meta-analysis aimed to investigate the longer-term risks and benefits of IACIs beyond 3 months. Methods. We searched MEDLINE, EMBASE, and CENTRAL from inception to January 07, 2021, for randomised controlled trials (RCTs) where patients with OA had received recurrent IACIs. Our primary outcomes were pain and function. Secondary outcomes included QoL, disease progression, radiological changes, and adverse events. Mean differences with 95% confidence intervals were reported. Results. Ten RCTs met eligibility criteria (eight for knee OA [n=378], two for trapeziometacarpal OA [n=57]). Patients received 2–5 injections. Follow-up ranged from 6–24 months. Patients with knee OA showed mild improvement in pain at 3, 6, and 9 months but not at 12 months post-injection compared to baseline. Improvements in function were seen from 3–24 months post-injection, decreasing over time. Improvements in QoL continued at 24 months. For patients with trapeziometacarpal OA, mild improvements in pain, function, and QoL were demonstrated at 3–6 months (and 12 months for pain) compared to baseline. No serious adverse events were recorded. No studies reported on time-to-future interventions, or risk of future periprosthetic joint infection. Conclusions. Only mild improvements in pain, function, and QoL were noted after recurrent IACIs up to 6–24 months post-injection. Existing RCTs on recurrent IACI lacks sufficient follow-up data to assess disease progression and time-to-future interventions. These results will inform the RecUrrent Intra-articular Corticosteroid injections in Osteoarthritis (RUbICOn) study which aims to establish the long-term safety outcomes of IACI through data linkage of clinical practice data, hospital episode statistics, and national PROMs


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 118 - 118
1 Nov 2021
Pareatumbee P Yew A Koh JSB Howe TS Abidin SZ Tan MH
Full Access

Introduction and Objective. Curative resection of proximal humerus tumours is now possible in this era of limb salvage with endoprosthetic replacement considered as the preferred reconstructive option. However, it has also been linked with mechanical and non-mechanical failures such as stem fracture and aseptic loosening. One of the challenges is to ensure that implants will endure the mechanical strain under physiological loading conditions, especially crucial in long surviving patients. The objective is to investigate the effect of varying prosthesis length on the bone and implant stresses in a reconstructed humerus-prosthesis assembly after tumour resection using finite element (FE) modelling. Methods. Computed tomography (CT) scans of 10 humeri were processed in Mimics 17 to create three-dimensional (3D) cortical and cancellous solid bone models. Endoprostheses of different lengths manufactured by Stryker were modelled using Solidworks 2020. The FE models were divided into four groups namely group A consisting of the intact humerus and groups B, C and D composed of humerus-prosthesis assemblies with a body length of 40, 100 and 120 mm respectively and were meshed using linear 4-noded tetrahedral elements in 3matic 13. The models were then imported into Abaqus CAE 6.14. Isotropic linear elastic behaviour with an elastic modulus of 13400, 2000 and 208 000 MPa were assigned to the cortical bone, cancellous bone and prosthesis respectively and a Poisson's ratio of 0.3 was assumed for each material. To represent the lifting of heavy objects and twisting motion, a tensile load of 200 N for axial loading and a 5 Nm torsional load for torsional loading was applied separately to the elbow joint surface with the glenohumeral joint fixed and with all contact interfaces defined as fully bonded. A comparative analysis against literature was performed to validate the intact model. Statistical analysis of the peak von Mises stress values collected from predicted stress contour plots was performed using a one-way repeated measure of analysis of variance (with a Bonferroni post hoc test) using SPSS Statistics 26. The average change in stress of the resected models from the intact state were then determined. Results. The validation of the intact humerus displayed a good agreement with literature values. The peak bone stress occurred distally above the coronoid and olecranon fossa closer to the load application region in the intact and resected bone models with a significant amount of loading borne by the cortical bone, while the peak implant stress occurred at the bone-prosthesis contact interface under both loading conditions. Based on the results obtained, a statistically significant difference (p =.013) in implant stress was only seen to occur between groups B and C under tension. Results illustrate initiation of stress shielding with the bone bearing lesser stress with increasing resection length which may eventually lead to implant failure by causing bone resorption according to Wolff's law. The peak implant stress under torsion was 3–5 times the stress under tension. The best biomechanical behaviour was exhibited in Group D, having the least average change in stress from the intact model, 5% and 3.8% under tension and torsion respectively. It can be deduced that the shorter the prosthesis length, the more pronounced the effect on cortical bone remodelling. With the maximum bone and implant stresses obtained being less than their yield strength, it can be concluded that the bone-implant construct is safe from failure. Conclusions. The developed FE models verified the influence of varying the prosthesis length on the bone and implant stresses and predicted signs of stress shielding in longer endoprostheses. By allowing for 2 cm shortening in the upper extremity and post-surgical scarring, it is beneficial to err towards a shorter endoprosthesis


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 119 - 119
1 Mar 2021
Peters M Jeuken R Steijvers E Wijnen W Emans P
Full Access

The modified Hedgehog technique was previously used to reattach pure chondral shear-off fragments in the pediatric knee. In the modified Hedgehog technique, the calcified side of chondral fragments is multiple times incised and trimmed obliquely for an interlocking fit in the defect site. Fibrin glue with or without sutures is subsequently applied to fix the fragment to the defect. This preliminary report further elucidates the potential of the technique by evaluation of its application in young adults using patient reported outcome measures (PROMs) and high-field Magnetic Resonance Imaging (MRI) as outcome measures. Three patients with a femoral cartilage defect (2 medial, 1 lateral), and a concomitant pure chondral corpus liberum were operatively treated by the modified Hedgehog technique. Age at surgery ranged from 20.6–21.2 years, defect size ranged from 3.8–6.0 cm2. Patients were evaluated at three months and one year after surgery by PROMs and 7.0T MRI. PROMs included the Internation Knee Documentation (IKDC), Knee Injury and Osteoarthritis Outcome Score (KOOS) and Visual Analog Scale (VAS) questionnaires. 7.0T MRI (Magnetom, Siemens Healthcare, Erlangen, Germany) using a 28-channel proton knee coil (QED, Electrodynamics LLC, Cleveland, OH) included a proton density weighted turbo spin-echo sequence with fat suppression to assess morphological tissue structure andgagCEST imaging to measure the biochemical tissue composition in terms of glycosaminoglycans (GAG). Twelve months after surgery all patients reported no pain and showed full range of motion. While PROMs at three months showed large variability between patients, one year after surgery the scores were consistently improved. Over time, morphological MRI visualized improvements in integration of the cartilage fragment with the surrounding cartilage, which was supported by biochemical MRI showing increased GAG values at the defect edges. Statistics were not applied to the results because of the small sample size. The modified Hedgehog technique in young adults with an acute onset caused by a pure chondral corpus liberum can be considered promising. The improved PROM results over time were supported by 7.0T MRI that visualized improvements in tissue structure and biochemical composition. Inclusion of more patients in future studies would allow statistical analysis and more conclusive results. The etiology of loosening and time between onset of symptoms and surgery for successful graft integration may differ between pediatric and young adult patients and is subject for future studies


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 83 - 83
1 Mar 2021
Klatte-Schulz F Minkwitz S Schmock A Bormann N Kurtoglu A Tsitsilonis S Manegold S Wildemann B
Full Access

Tendon healing is a complex process that often results in compromised healing of the tendon tissue. It has recently been shown that temporal changes in the expression profile and the histological tissue quality of the tendons occur during the early healing process after acute Achilles tendon rupture. Whether these changes are accompanied by an altered healing process, is not yet known and was the aim of the present study. Tendon biopsies were obtained from 24 patients with acute Achilles tendon rupture at the time of surgery (2–9 days after rupture) and examined histologically as well as on RNA level. Histologically, the tendon architecture, the amount of aligned collagen, glycosaminoglycan and fat as well as the cellularity, vascularity and immune cell infiltration were determined. On RNA level the expression of markers for the modeling/remodeling (MMPs and TIMPs), collagens (1, 3, 5), tendon markers (scleraxis, tenomodulin), pro- and anti-inflammatory markers (IL-1beta, IL6, IL10, IL33, TNFa, TGF-beta1, COX2) and immune cell markers (CD3, CD68, CD80, CD206) were analyzed by Real-Time PCR. To determine the clinical outcome, the patients were followed up 12 months after the operation and the following scores were recorded: Subjective score, Tegner score, Visual Analog Scale (VAS) pain, VAS function, Matles Test, Achilles tendon total rupture score (ATRS), Therman 100-points score, Heel rise test. Statistics: Spearman correlation analysis. Correlation analysis shows that early post-rupture surgery is associated with better clinical outcome (ATRS Score: p=0.022). Histologically, a good functional healing outcome shows a positive correlation to the amount of aligned collagen (Heel Rise Test: p = 0.009) and glycosaminoglycans in the tendon (Heel Rise Test: p = 0.026, Matles difference: p = 0.029), as well as a negative correlation to the fat content (Thermann score: p = 0.018, subjective score: p = 0.027, VAS function: p = 0.031). On RNA level, a good healing outcome correlates with increased expression of MMP13, collagen 1, 3, 5 (Heel Rise Test: p = 0.019, p = 0.048, p = 0.030), and TIMP2 (Tegner Score: p = 0.040), TGF-beta1 (Thermann Score: p = 0.032) and CD80 (ATRS: p = 0.025, Thermann score:, p = 0.032). Whereas a limited healing outcome is associated with an increased expression of MMP2 (Heel Rise Test: p = 0.033), MMP3 (Matles Test: p=0.001, Heal Rise test p = 0.017), and IL33 (Tegner Score: p = 0.047). The results of the study show a clear relationship between the tendon biology at the time of the surgery and the clinical and functional healing outcome 12 months after the operation. Especially matrix formation and remodeling play a crucial role, while the examined immunological factors seem to influence the tendon healing to a lesser extent. The modulation of matrix formation could potentially lead to improved treatment options in the future


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_14 | Pages 7 - 7
1 Nov 2018
Wong L Moriarty P Harty J
Full Access

Revision total hip arthroplasty (THA) presents with increasing challenges, potentially compromising the integrity of a revision. The objective of this study was to assess radiologic outcomes of patients who underwent revision THA with a modular tapered stem (Reclaim, DePuy Synthes). This study retrospectively examined all revision Reclaim THAs between 2012 and 2016. Radiologic assessment compared x-rays at two time points: immediately after surgery and the most recent x-ray available. Leg length discrepancy, subsidence and line-to-line fit was assessed. Significant subsidence was considered ≥10mm. Adequate line-to-line fit was considered ≥30mm of bicortical contact. Descriptive statistics included clinical factors (i.e. age, Paprosky classification). P values <0.05 were considered significant. A total of 81 femoral revisions were completed. There were 42 females and 38 males with a mean age of 71 years (range, 46–89). Of these, 6 were revised (dislocation, fracture or infection), and 7 were lost to follow up. Average follow up time was 18 months (range, 1–46 months). Femoral revisions were classified as Paprosky 3a or 3b. Mean stem subsidence was 4.15mm (range, 0–25.6mm). Subsidence of the femoral stem was <10mm in 88% of patients. A total of 62% of patients had both subsidence <10mm and ≥30mm of bicortical contact. In patients with <10mm subsidence, 70% had ≥30mm of bicortical contact. There was a positive trend between cortical contact and stem stability (OR 2.3). The Reclaim modular femoral system has demonstrated radiographic stability. Inadequate initial fit is a potential determinant of subsidence


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_14 | Pages 123 - 123
1 Nov 2018
Lenguerrand E Whitehouse M Beswick A Kunutsor S Porter M Blom A
Full Access

Periprosthetic joint infections (PJIs) are uncommon but are devastating complications of total knee replacement (TKR). We analysed the risk factors of revision for PJI following primary TKR and their association with PJI at different post-operative periods. Primary TKRs and subsequent revision surgeries performed for PJI from 2003–2014 were identified from the National Joint Registry (NJR). Multilevel piece-wise exponential non-proportional hazards models were used to estimate the effect of the investigated factors at different post-operative periods. Patient, perioperative and healthcare system characteristics were investigated and data from the Hospital Episode Statistics for England were linked to obtain information on specific comorbidities. The index TKRs consisted of 679,010 primaries with 3,659 subsequently revised for PJI, 7% within 3 months, 6% between 3–6months, 17% between 6–12months, 27% between 1–2years and 43% ≥2 years from the index procedure. Risk factors for revision for PJI included male sex, high BMI, high ASA grade and young age. Patients with chronic pulmonary disease, diabetes and liver disease had higher risk of revision for PJI, as had patients who had a primary TKR for an indication of trauma or inflammatory arthropathy. Surgical procedure, fixation method, constraint and bearing type influenced the risk of revision for PJI. Their effects were period-specific. No or small associations were found with the operating surgeon grade, surgical volume and hospital surgical volume. These findings from the world's largest joint replacement registry show a more complex picture than the meta-analyses published to date with specific time-dependent effects for the identified risk factors


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_16 | Pages 133 - 133
1 Nov 2018
Linton KN Headon RJ Waqas A Bennett DM
Full Access

Over the past two decades much has been written regarding pain and disability following whiplash injury. Several authors have reported on the relationship between insurance claims and whiplash-associated disorders. Our own experience of over 10-years suggests that fracture may be protective of whiplash injury following road traffic accident (RTA). We exported all ‘medical legal’ cases due to RTA from our EMR system and combined this with patient-reported outcome measures. 1,482 (57%) of all medicolegal cases are due to RTA: 26% ‘head-on’, 34% ‘side-impact’ and 40% ‘rear-ended’. Over half of the vehicles involved are subsequently written-off. While the mean BMI is 27.1, ¼ of this cohort has a BMI over 30 (obese). 163 (11%) patients report a fracture occurring as a result of RTA. Type of impact is significant for fracture (p < 0.05). 47% of RTA which result in fracture are due to ‘head-on’ collision; conversely only 21% are due to ‘rear-ended’ impacts. In 1,324 (89%) of RTA without fracture, patients are twice as likely to report whiplash injury as one of their top-3 sources of pain (p < 0.01). Gender is statistically significant for age (M 44.4, F 38.6, p < 0.05). While the BMI of this cohort is alarming, it is consistent with Irish obesity statistics. Type of impact, in particular ‘head-on’ collision (high kinetic energy event), is significant for fracture. Finally, we report that fracture is significantly protective (p < 0.01) of whiplash injury following RTA


Bone & Joint 360
Vol. 13, Issue 4 | Pages 43 - 45
2 Aug 2024
Evans JT Evans JP Whitehouse MR


Bone & Joint 360
Vol. 12, Issue 4 | Pages 44 - 46
1 Aug 2023
Burden EG Whitehouse MR Evans JT


Bone & Joint 360
Vol. 13, Issue 2 | Pages 47 - 49
1 Apr 2024
Burden EG Krause T Evans JP Whitehouse MR Evans JT