Advertisement for orthosearch.org.uk
Results 1 - 20 of 79
Results per page:
Bone & Joint Research
Vol. 6, Issue 3 | Pages 132 - 136
1 Mar 2017
Yuenyongviwat V Ingviya N Pathaburee P Tangtrakulwanich B

Objectives. Vancomycin and fosfomycin are antibiotics commonly used to treat methicillin-resistant Staphylococcus aureus (MRSA) infection. This study compares the in vitro inhibitory effects against MRSA of articulating cement spacers impregnated with either vancomycin or fosfomycin. Methods. Vancomycin-impregnated articulating cement spacers and fosfomycin-impregnated articulating cement spacers were immersed in sterile phosphate-buffered saline (PBS) solutions and then incubated. Samples were collected for bioactivity evaluation. The aliquots were tested for MRSA inhibition with the disc diffusion method, and the inhibition zone diameters were measured. The inhibition zone differences were evaluated using the Wilcoxon Rank Sum Test. Results. The vancomycin group had significantly larger inhibition zones than the fosfomycin group from day three through to completion of the fourth week of incubation (p < 0.001). The vancomycin group exhibited a MRSA inhibition zone up to four weeks but the fosfomycin group showed an inhibition zone for only three days and after that did not show the the potential to inhibit MRSA. Conclusion. This in vitro study found that the inhibitory effect of vancomycin-impregnated articulating cement spacers against MRSA outperformed fosfomycin-impregnated articulating cement spacers. Further comparing our results to other published reports suggests there might be a limitation of the disc diffusion bioassay to show a large inhibitory zone in a high concentration of a highly soluble antibiotic. Cite this article: V. Yuenyongviwat, N. Ingviya, P. Pathaburee, B. Tangtrakulwanich. Inhibitory effects of vancomycin and fosfomycin on methicillin-resistant Staphylococcus aureus from antibiotic-impregnated articulating cement spacers. Bone Joint Res 2017;6:132–136. DOI: 10.1302/2046-3758.63.2000639


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 48 - 48
17 Apr 2023
Akhtar R
Full Access

To determine risk factors of infection in total knee arthroplasty. This descriptive study was conducted in the Department of Orthopedics for a duration of three years from January 2016 to January 2019. All patients undergoing primary total knee replacement were included in the study. Exclusion criteria were all patients operated in another hospital and revision total knee replacement. All patients were followed up at 2, 4, 8, 12 and 24 weeks post-operatively. Signs of inflammation and inflammatory markers such as total leukocyte count (TLC), C-reactive protein (CRP) and ESR were measured. Risk factors like age, body mass index (BMI), ASA, co-morbid conditions were also noted. A total of 78 patients underwent primary unilateral Total Knee Replacement (TKR) during the study period. Of these, 30 (34.09%) were male and 48 (61.54%) female patients. Mean age of patients was 68.32 ± 8.54 years. Average BMI 25.89 Kg/m2 .Osteoarthritis was the pre-dominant cause of total knee replacement (94.87%). Among co-morbid factors 33.33% were diabetic, 28.20% having ischemic heart disease and 12.82% with chronic lung disease. Upon anaesthesia fitness pre-operatively, 91.02% patients had an American society of anaesthesiologist score (ASA) between 0–2 while 07 (8.97%) between 3- 5. Average duration of surgery was 85.62± 4.11 minutes. 6.41% cases got infected. In majority of the infected cases (60%), Staphylococcus aureus was the infective organism. Diabetes Mellitus (p=0.01) and Obesity (p=0.02) had a significant relation to post-operative infection. Pre-operative risk evaluation and prevention strategies along with early recognition of infection and control can greatly reduce the risk of joint infection post-TKR which will not only improve the mobility of patient but also its morbidity and mortality as well. Key Words:. C-reactive protein (CRP), Erythrocyte Sedimentation Rate (ESR), Staphylococcus aureus, Total Knee Arthroplasty (TKA)


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_3 | Pages 61 - 61
1 Apr 2018
Tuleubaev B Akhmetova S Saginova D Koshanova A Tashmetov E Arutyunyan M
Full Access

Background. The different biodegradable local antibiotic delivery systems are widely used in recent years. The aim of this study was to evaluate the bactericidal activity antibiotic loaded PerOssal pellet in vitro and its effectiveness in the treatment of Staphylococcus aureus induced chronic osteomyelitis. Material and methods. MALDI-TOF have been applied to microbiological diagnosis in patient with osteomyelitis. In most cases, Staphylococcus aureus was isolated. In vitro Ceftriaxone-Loaded PerOssal pellet were placed in middle agar plate containing a stock strain of Staphylococcus aureus. Plates were incubated at 37ºC for 24 hours. The zones of bacterial inhibition were recorded after 24, 48 and 72 hours of incubation. In vivo evaluation was performed by prospectively studying of 21 patients with a clinically and bacteriologically diagnosed Staphylococcus aureus induced osteomyelitis. Mean age was 38±4,2(26 to 53)). After radical surgical debridement and ultrasound cavitation, the bone cavity was full filled with Perosal pellets loaded with different antibiotics depending from the antibiotic sensitivity test. Endpoints were the absence of clinical manifestation of infection or disease recurrence, no need for further surgery. Results. In vitro showed after 24 hrs inhibition zone was 4,2 х 4,9 cm, after 72 hrs the inhibition zone was increased till 7,6 х 8,4 cm. During the subsequent time, there were no changes. Results of the clinical study evidenced no signs of infection in 18 patients (86% (CI 69,8;100)) (p<0,05) at the follow up, while 3 (14%(CI 0;30,2)) (p<0,05) subjects showed infection recurrence at 6 months from operation and 2 of them needed further surgical procedures. Conclusion. PerOssal as an antibiotic carrier stabilizes the action of the antibiotic. This antibiotic carrier system allows to choose an antibiotic individually for each patient according to the antibiotic sensitivity test and can be successfully used in clinical cases of osteomyelitis


Full Access

To date, few studies have investigated the feasibility of the loop-mediated isothermal amplification (LAMP) assay for identifying pathogens in tissue samples. This study aimed to investigate the feasibility of LAMP for the rapid detection of methicillin-susceptible or methicillin-resistant Staphylococcus aureus (MSSA or MRSA) in tissue samples, using a bead-beating DNA extraction method. Twenty tissue samples infected with either MSSA (n = 10) or MRSA (n = 10) were obtained from patients who underwent orthopedic surgery for suspected musculoskeletal infection between December 2019 and September 2020. DNA was extracted from the infected tissue samples using the bead-beating method. A multiplex LAMP assay was conducted to identify MSSA and MRSA infections. To recognize the Staphylococcus genus, S. aureus, and methicillin resistance, 3 sets of 6 primers for the 16S ribosomal ribonucleic acid (rRNA) and the femA and mecA genes were used, respectively. The limit of detection and sensitivity (detection rate) of the LAMP assay for diagnosing MSSA and MRSA infection were analyzed. The results of this study suggest that the LAMP assay performed with tissue DNA samples can be a useful diagnostic method for the rapid detection of musculoskeletal infections caused by MSSA and MRSA


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 19 - 19
2 Jan 2024
Li R Zheng J Smith P Chen X
Full Access

Device-associated bacterial infections are a major and costly clinical challenge. This project aimed to develop a smart new biomaterial for implants that helps to protect against infection and inflammation, promote bone growth, and is biodegradable. Gallium (Ga) doped strontium-phosphate was coated on pure Magnesium (Mg) through a chemical conversion process. Mg was distributed in a graduated manner throughout the strontium-phosphate coating GaSrPO4, with a compact structure and a Ga-rich surface. We tested this sample for its biocompatibility, effects on bone remodeling and antibacterial activities including Staphylococcus aureus, S. epidermidis and E. coli - key strains causing infection and early failure of the surgical implantations in orthopaedics and trauma. Ga was distributed in a gradient way throughout the entire strontium-phosphate coating with a compact structure and a gallium-rich surface. The GaSrPO4 coating protected the underlying Mg from substantial degradation in minimal essential media at physiological conditions over 9 days. The liberated Ga ions from the coatings upon Mg specimens inhibited the growth of bacterial tested. The Ga dopants showed minimal interferences with the SrPO4 based coating, which boosted osteoblasts and undermined osteoclasts in in vitro co-cultures model. The results evidenced this new material may be further translated to preclinical trial in large animal model and towards clinical trial. Acknowledgements: Authors are grateful to the financial support from the Australian Research Council through the Linkage Scheme (ARC LP150100343). The authors acknowledge the facilities, and the scientific and technical assistance of the RMIT University and John Curtin School of Medical Research, Australian National University


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 21 - 21
4 Apr 2023
Meinshausen A Büssemaker H Viet Duc B Döring J Voropai V Müller A Martin A Berger T Schubert A Bertrand J
Full Access

Periprosthetic joint infections (PJI) are one of the most common reasons for orthopedic revision surgeries. In previous studies, it has been shown that silver modification of titanium (Ti-6Al-4V) surfaces by PMEDM (powder mixed electrical discharge machining) has an antibacterial effect on Staphylococcus aureus adhesion. Whether this method also influences the proliferation of bacteria has not been investigated so far. Furthermore, the effect is only limitedly investigated on the ossification processes. Therefore, the aim of this work is to investigate the antibacterial effect as well as the in vitro ossification process of PMEDM machined surfaces modified by integration of silver. In this study, we analyzed adhesion and proliferation of S. aureus in comparison to of surface roughness, silver content and layer thickness of the silver-integrated-PMEDM surfaces (N = 5). To test the in vitro ossification, human osteoblasts (SaOs-2) and osteoclasts (differentiated from murine-bone-marrow-macrophages) were cultured on the silver surfaces (N = 3). We showed that the attachment of S. aureus on the surfaces was significantly lower than on the comparative control surfaces of pure Ti-6Al-4V without incorporated silver, independently of the measured surface properties. Bacterial proliferation, however, was not affected by the silver content. No influence on the in vitro ossification was observed, whereas osteoclast formation was drastically reduced on the silver-modified surfaces. We showed that 1 to 3% of silver in the surface layer significantly reduced the adhesion of S. aureus, but not the proliferation of already attached bacteria. At the same time, no influence on the in vitro ossification was observed, while no osteoclasts were formed on the surface. Therefore, we state that PMEDM with simultaneous silver modification of the machined surfaces represents a promising technology for endoprostheses manufacturing to reduce infections while at the same time optimizing bone ingrowth


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 65 - 65
11 Apr 2023
Siverino C Arens D Zeiter S Richards G Moriarty F
Full Access

In chronically infected fracture non-unions, treatment requires extensive debridement to remove necrotic and infected bone, often resulting in large defects requiring elaborate and prolonged bone reconstruction. One approach includes the induced membrane technique (IMT), although the differences in outcome between infected and non-infectious aetiologies remain unclear. Here we present a new rabbit humerus model for IMT secondary to infection, and, furthermore, we compare bone healing in rabbits with a chronically infected non-union compared to non-infected equivalents. A 5 mm defect was created in the humerus and filled with a polymethylmethacrylate (PMMA) spacer or left empty (n=6 per group). After 3 weeks, the PMMA spacer was replaced with a beta-tricalcium phosphate (chronOs, Synthes) scaffold, which was placed within the induced membrane and observed for a further 10 weeks. The same protocol was followed for the infected group, except that four week prior to treatment, the wound was inoculated with Staphylococcus aureus (4×10. 6. CFU/animal) and the PMMA spacer was loaded with gentamicin, and systemic therapy was applied for 4 weeks prior to chronOs application. All the animals from the infected group were culture positive during the first revision surgery (mean 3×10. 5. CFU/animal, n= 12), while at the second revision, after antibiotic therapy, all the animals were culture negative. The differences in bone healing between the non-infected and infected groups were evaluated by radiography and histology. The initially infected animals showed impaired bone healing at euthanasia, and some remnants of bacteria in histology. The non-infected animals reached bone bridging in both empty and chronOs conditions. We developed a preclinical in vivo model to investigate how bacterial infection influence bone healing in large defects with the future aim to explore new treatment concepts of infected non-union


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 134 - 134
2 Jan 2024
Ghezzi D Sartori M Boi M Montesissa M Sassoni E Fini M Baldini N Cappelletti M Graziani G
Full Access

Prosthetic joint infections represent complications connected to the implantation of biomedical devices, they have high incidence, interfere with osseointegration, and lead to a high societal burden. The microbial biofilm, which is a complex structure of microbial cells firmly attached to a surface, is one of the main issues causing infections. Biofilm- forming bacteria are acquiring more and more resistances to common clinical treatments due to the abuse of antibiotics administration. Therefore, there is increasing need to develop alternative methods exerting antibacterial activities against multidrug-resistant biofilm-forming bacteria. In this context, metal-based coatings with antimicrobial activities have been investigated and are currently used in the clinical practice. However, traditional coatings exhibit some drawbacks related to the insufficient adhesion to the substrate, scarce uniformity and scarce control over the toxic metal release reducing their efficacy. Here, we propose the use of antimicrobial silver-based nanostructured thin films to discourage bacterial infections. Coatings are obtained by Ionized Jet Deposition, a plasma-assisted technique that permits to manufacture films of submicrometric thickness having a nanostructured surface texture, allow tuning silver release, and avoid delamination. To mitigate interference with osseointegration, here silver composites with bone apatite and hydroxyapatite were explored. The antibacterial efficacy of silver films was tested in vitro against gram- positive and gram-negative species to determine the optimal coatings characteristics by assessing reduction of bacterial viability, adhesion to substrate, and biofilm formation. Efficacy was tested in an in vivo rabbit model, using a multidrug-resistant strain of Staphylococcus aureus showing significant reduction of the bacterial load on the silver prosthesis both when coated with the metal only (>99% reduction) and when in combination with bone apatite (>86% reduction). These studies indicate that IJD films are highly tunable and can be a promising route to overcome the main challenges in orthopedic prostheses


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 8 - 8
17 Apr 2023
Buchholz T Zeiter S Moriarty T Awad H Nehrbass D Constant C Elsayed S Yan M Allen M
Full Access

Treatment of bone infection often includes a burdensome two-stage revision. After debridement, contaminated implants are removed and replaced with a non-absorbable cement spacer loaded with antibiotics. Weeks later, the spacer is exchanged with a bone graft aiding bone healing. However, even with this two-stage approach infection persists. In this study, we investigated whether a novel 3D-printed, antibiotic-loaded, osteoinductive calcium phosphate scaffold (CPS) is effective in single-stage revision of an infected non-union with segmental bone loss in rabbits. A 5 mm defect was created in the radius of female New Zealand White rabbits. The bone fragment was replaced, stabilized with cerclage wire and inoculated with Staphylococcus aureus (MSSA). After 4 weeks, the infected bone fragment was removed, the site debrided and a spacer implanted. Depending on group allocation, rabbits received: 1) PMMA spacer with gentamycin; 2) CPS loaded with rifampin and vancomycin and 3) Non-loaded CPS. These groups received systemic cefazolin for 4 weeks after revision. Group 4 received a loaded CPS without any adjunctive systemic therapy (n=12 group1-3, n=11 group 4). All animals were euthanized 8 weeks after revision and assessed by quantitative bacteriology or histology. Covariance analysis (ANCOVA) and multiple regression were performed. All animals were culture positive at revision surgery. Half of the animals in all groups had eliminated the infection by end of study. In a historical control group with empty defect and no systemic antibiotic treatment, all animals were infected at euthanasia. There was no significant difference in CFU counts between groups at euthanasia. Our results show that treating an osteomyelitis with segmental bone loss either with CPS or PMMA has a similar cure rate of infection. However, by not requiring a second surgery, the use of CPS may offer advantages over non-resorbable equivalents such as PMMA


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 18 - 18
2 Jan 2024
Ghezzi D Sartori M Boi M Montesissa M Sassoni E Fini M Baldini N Cappelletti M Graziani G
Full Access

Prosthetic joint infections represent complications connected to the implantation of biomedical devices, they have high incidence, interfere with osseointegration, and lead to a high societal burden. The microbial biofilm, which is a complex structure of microbial cells firmly attached to a surface, is one of the main issues causing infections. Biofilm- forming bacteria are acquiring more and more resistances to common clinical treatments due to the abuse of antibiotics administration. Therefore, there is increasing need to develop alternative methods exerting antibacterial activities against multidrug-resistant biofilm-forming bacteria. In this context, metal-based coatings with antimicrobial activities have been investigated and are currently used in the clinical practice. However, traditional coatings exhibit some drawbacks related to the insufficient adhesion to the substrate, scarce uniformity and scarce control over the toxic metal release reducing their efficacy. Here, we propose the use of antimicrobial silver-based nanostructured thin films to discourage bacterial infections. Coatings are obtained by Ionized Jet Deposition, a plasma-assisted technique that permits to manufacture films of submicrometric thickness having a nanostructured surface texture, allow tuning silver release, and avoid delamination. To mitigate interference with osseointegration, here silver composites with bone apatite and hydroxyapatite were explored. The antibacterial efficacy of silver films was tested in vitro against gram- positive and gram-negative species to determine the optimal coatings characteristics by assessing reduction of bacterial viability, adhesion to substrate, and biofilm formation. Efficacy was tested in an in vivo rabbit model, using a multidrug-resistant strain of Staphylococcus aureus showing significant reduction of the bacterial load on the silver prosthesis both when coated with the metal only (>99% reduction) and when in combination with bone apatite (>86% reduction). These studies indicate that IJD films are highly tunable and can be a promising route to overcome the main challenges in orthopedic prostheses


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 15 - 15
2 Jan 2024
Costa B Alves P Fonseca D Campos F Monteiro AC Pereira R Costa F Gomes P Martínez-de-Tejada G Monteiro C Martins M
Full Access

Orthopedic Device-Related Infections (ODRIs) are a major medical challenge, particularly due to the involvement of biofilm-encased and multidrug-resistant bacteria. Current treatments, based on antibiotic administration, have proven to be ineffective. Consequently, there is a need for antibiotic-free alternatives. Antimicrobial peptides (AMPs) are a promising solution due to their broad-spectrum of activity, high efficacy at very low concentrations, and low propensity to induce resistance. We aim to develop a new AMP-based chitosan nanogel to be injected during orthopedic device implantation to prevent ODRIs. Chitosan was functionalized with norbornenes (NorChit) through the reaction with carbic anhydride and then, a cysteine-modified AMP, Dhvar5, a peptide with potent antibacterial activity, even against methicillin-resistant Staphylococcus aureus (MRSA), was covalently conjugated to NorChit (NorChit- Dhvar5), through a thiol-norbornene photoclick chemistry (UV= 365 nm). For NorChit-Dhvar5 nanogels production, the NorChit-Dhvar5 solution (0.15% w/v) and Milli-Q water were injected separately into microfluidic system. The nanogels were characterized regarding size, concentration, and shape, using Transmission Electron Microscopy (TEM), Nanoparticle Tracking Analysis (NTA) and Dynamic light scattering (DLS). The nanogels antibacterial properties were assessed in Phosphate Buffer (PBS) for 6 h, against four relevant microorganisms (Pseudomonas aeruginosa, S. aureus and MRSA, and in Muller- Hinton Broth (MHB), 50% (v/v) in PBS, supplemented with human plasma (1% (v/v)), for 6 and 24 h against MRSA. The obtained NorChit-Dhvar5 nanogels, presented a round-shaped and ∼100 nm. NorChit- Dhvar5 nanogels in a concentration of 10. 10. nanogels/mL in PBS were capable of reducing the initial inoculum of P. aeruginosa by 99%, S. aureus by 99%, and MRSA by 90%. These results were corroborated by a 99% MRSA reduction, after 24 h in medium. Furthermore, NorChit-Dhvar5 nanogels do not demonstrate signs of cytotoxicity against MC3T3-E1 cells (a pre-osteoblast cell line) after 14 days, having high potential to prevent antibiotic-resistant infection in the context of ODRIs


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 45 - 45
2 Jan 2024
Riool M Li R Hofwegen L de Boer L Loontjens J Zaat S
Full Access

Infection of implanted medical devices (biomaterials), like titanium orthopaedic implants, can have disastrous consequences, including removal of the device. These so-called biomaterial-associated infections (BAI) are mainly caused by Staphylococcus aureus and Staphylococcus epidermidis. To prevent biofilm formation using a non-antibiotic based strategy, we aimed to develop a novel permanently fixed antimicrobial coating for titanium devices based on stable immobilized quaternary ammonium compounds (QACs). Medical grade titanium implants were dip-coated in subsequent solutions of hyperbranched polymer, polyethyleneimine and 10 mM sodium iodide, and ethanol. The QAC-coating was characterized using water contact angle measurements, scanning electron microscopy, FTIR, AFM and XPS. The antimicrobial activity of the coating was evaluated against S. aureus strain JAR060131 and S. epidermidis strain ATCC 12228 using the JIS Z 2801:2000 surface microbicidal assay. Lastly, we assessed the in vivo antimicrobial activity in a mouse subcutaneous implant infection model with S. aureus administered locally on the QAC-coated implants prior to implantation to mimic contamination during surgery. Detailed material characterization of the titanium samples showed the presence of a homogenous and stable coating layer at the titanium surface. Moreover, the coating successfully killed S. aureus and S. epidermidis in vitro. The QAC-coating strongly reduced S. aureus colonization of the implant surface as well as of the surrounding tissue, with no apparent macroscopic signs of toxicity or inflammation in the peri-implant tissue at 1 and 4 days after implantation. An antimicrobial coating with stable quaternary ammonium compounds on titanium has been developed which holds promise to prevent BAI. Non-antibiotic-based antimicrobial coatings have great significance in guiding the design of novel antimicrobial coatings in the present, post-antibiotic era. Acknowledgements: This research was financially supported by the Health∼Holland/LSH-TKI call 2021–2022, project 25687, NACQAC: ‘Novel antimicrobial coatings with stable non-antibiotic Quaternary Ammonium Compounds and photosensitizer technology'


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 80 - 80
17 Apr 2023
Azizova L Morgan D Rowlands J Brousseau E Kulik T Palianytsia B Mansell J Birchall J Wilkinson T Sloan A Ayre W
Full Access

Preventing infections in joint replacements is a major ongoing challenge, with limited effective clinical technologies currently available for uncemented knee and hip prostheses. This research aims to develop a coating for titanium implants, consisting of a supported lipid bilayer (SLB) encapsulating an antimicrobial agent. The SLB will be robustly tethered to the titanium using self-assembled monolayers (SAMs) of octadecylphosphonic acid (ODPA). The chosen antimicrobial is Novobiocin, a coumarin-derived antibiotic known to be effective against resistant strains of Staphylococcus aureus. ODPA SAMs were deposited on TiO. 2. -coated quartz crystal microbalance (QCM) sensors using two environmentally friendly non-polar solvents (anisole and cyclopentyl methyl ether, CPME), two concentrations of ODPA (0.5mM and 1mM) and two processing temperatures (21°C and 60°C). QCM, water contact angle measurements, X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and temperature-programmed desorption mass spectrometry (TPD-MS) were used to characterise the ODPA SAM. A SLB with encapsulated Novobiocin was subsequently developed on the surface of the ODPA SAM using fluorescent lipids and a solvent assisted method. The prototype implant surface was tested for antimicrobial activity against S. aureus. A well-ordered, uniform ODPA SAM was rapidly formed using 0.5 mM ODPA in CPME at 21°C during 10 min, as confirmed by high Sauerbrey mass (≍285-290 ng/cm. 2. ), high atomic percentage phosphorus (detected using XPS) and high water contact angles (117.6±2.5°). QCM measurements combined with fluorescence microscopy provided evidence of complete planar lipid bilayer formation on the titanium surface using a solvent assisted method. Incorporation of Novobiocin into the SLB resulted in reduced attachment and viability of S. aureus. Key parameters were established for the rapid, robust and uniform formation of an ODPA SAM on titanium (solvent, temperature and concentration). This allowed the successful formation of an antimicrobial SLB, which demonstrated potential for reducing attachment and viability of pathogens associated with joint replacement infections


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 49 - 49
4 Apr 2023
Zelmer A Gunn N Nelson R Richter K Atkins G
Full Access

Staphylococcus aureus (SA), the predominant pathogen in human osteomyelitis, is known to persist by forming intracellular reservoirs, including in bone cells (Schwarz et al., 2019, Yang et al., 2018, Krauss et al., 2019, Gao et al., 2020, Bosse et al., 2005), promoting decreased antibiotic susceptibility. However, there are no evidence-based treatment guidelines for intracellular SA infections in osteomyelitis. We sought to address this by systematically reviewing the literature and, testing a selection of antibiotic treatments in a clinically relevant in vitro assay. We conducted a systematic review of the literature to determine the current evidence for the efficacy of antibiotics against intracellular SA infections relevant to osteomyelitis. For the antibiotics identified as potentially useful, we determined their minimal inhibitory concentration (MIC) against 11 clinical osteomyelitis SA- isolates. We selected those for further testing reported able to reach a higher concentration in the bone than the identified MIC against the majority of strains. Thus, rifampicin, oxacillin, linezolid, levofloxacin, oritavancin and doxycycline were tested in human SaOS-2-osteocyte infection models (Gunn et al., 2021) of acute (1d) or chronic (14d) infection to clear intracellular SA. Antibiotics were tested at 1x/4x/10x the MIC for the duration of 1d or 7d in each model. A systematic review found that osteoblasts and macrophages have mostly been used to test immediate short-term activity against intracellular SA, with a high variability in methodology. However, some extant evidence supports that rifampicin, oritravancin, linezolid, moxifloxacin and oxacillin may be effective intracellular treatments. While studies are ongoing, in vitro testing in a clinically relevant model suggests that rifampicin, oxacillin and doxycycline could be effectively used to treat osteomyelitic intracellular SA infections. Importantly, these have lower MICs against multiple clinical isolates than their respective clinically-achievable bone concentrations. The combined approach of a systematic review and disease-relevant in vitro screening will potentially inform as to the best approach for treating osteomyelitis where intracellular SA infection is confirmed or suspected


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 66 - 66
11 Apr 2023
Sebastian S Collin M Liu Y Raina D Tägil M Lidgren L
Full Access

There is a lack of carriers for the local delivery of rifampicin (RIF), one of the cornerstone second defence antibiotic for Staphylococcus aureus deep bone infections (DBIs). RIF is also associated with systemic side effects, and known for causing rapid development of antibiotic resistance when given as monotherapy. We evaluated a clinically usedbi-phasic calcium sulphate/hydroxyapatite (CaS/HA) biomaterial as a carrier for dual delivery of RIF with vancomycin (VAN) or gentamicin (GEN). It was hypothesized that this combined approach could provide improved biofilm eradication and prevent the development of RIF resistance. Methods: 1) Biofilm eradication: Using a modified crystal violet staining biofilm quantification method, the antibiotics released at different time points (Day 1, 3, 7, 14, 21, 28 and 35) from the hemispherical pellets of CaS/HA(500 mg)-VAN (24.57 mg) / GEN (10.35 mg) composites with or without RIF (8.11 mg) were tested for their ability to disrupt the preformed 48-h old biofilms of S. aureus ATCC 25923, and S. aureus clinical strain P-3 in 96-well microtitre plate. For each tested group of antibiotic fractions, five separate wells were used (n=5). 2) Testing for resistance development: Similar to the method mentioned above the 48-h biofilm embeded bacteria exposed to antibiotic fractions from different time points continuously for 7 days. The biofilms remained were then tested for RIF resistant strains of bacteria. Overall, there was clear antibiofilm biofilm activity observed with CaS/HA-VAN/GEN+RIF combinations compared with CaS/HA-VAN/GEN alone. The S. aureus strains developed resistance to RIF when biofilms were subjected to CaS/HA-RIF alone but not with combinations of CaS/HA-VAN/GEN+RIF. Enhanced antibiofilm effects without development of RIF resistance indicates that biphasic CaS/HA loaded with VAN or GEN could be used as a carrier for RIF for additional local delivery in clinically demanding DBIs. Acknowledgement: We deeply acknowledge the Royal Fysiographic Society of Lund, Landshövding Per Westlings Minnesfond and the Stina and Gunnar Wiberg fond for financial support


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 144 - 144
4 Apr 2023
Markel D Chatterji R Bou-Akl T Wu B Dietz P Ren W
Full Access

Irrigation with antiseptic agents, antibiotics, and surfactants are used for treatment and prevention of infections. Despite desirable microbicidal actions, studies have demonstrated cytotoxic effects on host tissue that may impair healing. This study investigated the extent of tissue damage caused by commonly used irrigation solutions in the presence or absence of infection. Air pouches created in 60 balb/c mice were divided into two groups (n=30): infected with Staphylococcus aureus and control. One week later the infected group was subdivided into 5 subgroups (n=6) based on irrigation solutions and by day 0 (immediately) and day7 after irrigation (n=3). Solutions included Saline, Bacitracin, Clorpactin, Irrisept and Bactisure. In infected group wash fluid was collected for quantitative analysis of bacterial growth. At the specified times mice were sacrificed, pouch tissue sent for histology, and sections analyzed for inflammation, necrosis, and edema. Inflammation decreased in infected vs sterile pouches for all solutions except Bacitracin day 0 and for all solutions day 7 with significance in all except Bacitracin (p<0.05). On day 0, necrosis increased in infected vs sterile pouches in Bacitracin (p=0.006), Irrisept (p=0.18), or Bactisure (p=0.07); however, on day 7, necrosis significantly decreased in infected pouches for all solutions (p<0.05) except for Clorpactin (p=0.18). Edema decreased in infected vs sterile pouches on day 0 for all solutions with significance in saline, Irrisept, and Bacitracin (p<0.05). On day 7, infected pouches had decreased edema in saline, Bacitracin, and Bactisure (p<0.05) and increased in Irrisept (p<0.05) and Clorpactin (p=0.069) compared to sterile pouches. Bacterial culture of washouts demonstrated that Clorpactin, Irrisept and Bactisure controlled the infection, whereas saline and Bacitracin showed bacterial multiplication 3.9 × 10^7 CFU/ml and 6.7 × 10^7 CFU/ml respectively. Bacitracin wash showed significantly more bacteria growth compared to Clorpactin (p=0.024), Irrisept (p=0.025) and Bactisure (p=0.025). Tissue damage varied with irrigation solutions and the presence or absence of infection. Presence of bacteria appeared to lead to less tissue inflammation and edema. Tissue necrosis varied over time with different solutions. Surgeons must weigh risks and benefits when selecting solutions and determining when to irrigate


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_14 | Pages 14 - 14
1 Dec 2022
Ghezzi D Baldini N Graziani G Cappelletti M
Full Access

Prosthetic joint infections represent complications connected to the implantation of biomedical devices. Bacterial biofilm is one of the main issues causing infections from contaminated orthopaedic prostheses. Biofilm is a structured community of microbial cells that are firmly attached to a surface and have unique metabolic and physiological attributes that induce improved resistance to environmental stresses including toxic compounds like antimicrobial molecules (e.g. antibiotics). Therefore, there is increasing need to develop methods/treatments exerting antibacterial activities not only against planktonic (suspended) cells but also against adherent cells of pathogenic microorganisms forming biofilms. In this context, metal-based coatings with antibacterial activities have been widely investigated and used in the clinical practice. However, traditional coatings exhibit some drawbacks related to the insufficient adhesion to the substrate, scarce uniformity and scarce control over the toxic metal release reducing the biofilm formation prevention efficacy. Additionally, standardized and systematic approaches to test antibacterial activity of newly developed coatings are still missing, while standard microbiological tests (e.g. soft-agar assays) are typically used that are limited in terms of simultaneous conditions that can be tested, potentially leading to scarce reproducibility and reliability of the results. In this work, we combined the Calgary Biofilm Device (CBD) as a device for high-throughput screening, together with a novel plasma-assisted technique named Ionized Jet Deposition (IJD), to generate and test new generation of nanostructured silver- and zinc-based films as coatings for biomedical devices with antibacterial and antibiofilm properties. During the experiments we tested both planktonic and biofilm growth of four bacterial strains, two gram-positive and two gram-negative bacterial strains, i.e. Staphylococcus aureus ATCC 6538P, Enterococcus faecalis DP1122 and Escherichia coli ATCC 8739 and Pseudomonas aeruginosa PAO1, respectively. The use of CBD that had the only wells covered with the metal coatings while the biofilm supports (pegs) were not sheltered allowed to selectively define the toxic effect of the metal release (from the coating) against biofilm development in addition to the toxic activity exerted by contact killing mechanism (on biofilms formed on the coating). The results indicated that the antibacterial and antibiofilm effects of the metal coatings was at least partly gram staining dependent. Indeed, Gram negative bacterial strains showed high sensitivity toward silver in both planktonic growth and biofilm formation, whereas zinc coatings provided a significant inhibitory activity against Gram positive bacterial strains. Furthermore, the coatings showed the maximal activity against biofilms directly forming on them, although, Zn coating showed a strong effect against biofilms of gram-positive bacteria also formed on uncoated pegs. We conclude that the metal-based coatings newly developed and screened in this work are efficient against bacterial growth and adherence opening possible future applications for orthopedic protheses manufacturing


Bone & Joint Research
Vol. 6, Issue 5 | Pages 323 - 330
1 May 2017
Pijls BG Sanders IMJG Kuijper EJ Nelissen RGHH

Objectives. Infection of implants is a major problem in elective and trauma surgery. Heating is an effective way to reduce the bacterial load in food preparation, and studies on hyperthermia treatment for cancer have shown that it is possible to heat metal objects with pulsed electromagnetic fields selectively (PEMF), also known as induction heating. We therefore set out to answer the following research question: is non-contact induction heating of metallic implants effective in reducing bacterial load in vitro?. Methods. Titanium alloy cylinders (Ti6Al4V) were exposed to PEMF from an induction heater with maximum 2000 watts at 27 kHz after being contaminated with five different types of micro-organisms: Staphylococcus epidermidis; Staphylococcus aureus; Pseudomonas aeruginosa; spore-forming Bacillus cereus; and yeast Candida albicans. The cylinders were exposed to incremental target temperatures (35°C, 45°C, 50°C, 55°C, 60°C, 65°C, 70°C) for up to 3.5 minutes. Results. There was an average linear heating rate of 0.39°C per second up to the target temperature, and thereafter the target temperature was maintained until the end of the experiment. At 60°C and higher (duration 3.5 minutes), there was a 6-log reduction or higher for every micro-organism tested. At 60°C, we found that the shortest duration of effective induction heating was 1.5 minutes. This resulted in a 5-log reduction or higher for every micro-organism tested. Conclusion. Non-contact induction heating of a titanium disk is effective in reducing bacterial load in vitro. These promising results can be further explored as a new treatment modality for infections of metal orthopaedic implants. Cite this article: B. G. Pijls, I. M. J. G. Sanders, E. J. Kuijper, R. G. H. H. Nelissen. Non-contact electromagnetic induction heating for eradicating bacteria and yeasts on biomaterials and possible relevance to orthopaedic implant infections: In vitro findings. Bone Joint Res 2017;6:323–330. DOI: 10.1302/2046-3758.65.BJR-2016-0308.R1


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 14 - 14
1 Mar 2021
Tsang J Gallagher M Simpson H
Full Access

Abstract. OBJECTIVES. Staphylococcus aureus is one of the most common pathogens in orthopaedic biomaterial-associated infections. The transition of planktonic S. aureus to its biofilm phenotype is critical in the pathogenesis of biomaterial-associated infections and the development of antimicrobial tolerance, which leads to ineffective eradication in clinical practice. This study sought to elucidate the effect of non-lethal dispersion on antimicrobial tolerance in S. aureus biofilms. METHODS. Using a methicillin-sensitive S. aureus reference strain, the effect of non-lethal dispersion on gentamicin tolerance, cellular activity, and the intracellular metabolome of biofilm-associated bacteria were examined. Gentamicin tolerance was estimated using the dissolvable bead biofilm assay. Cellular activity was estimated using the triphenyltetrazolium chloride assay. Metabolome analysis was performed using tandem high-performance liquid chromatography and mass spectrometry. RESULTS. Non-lethal dispersion of biofilm-associated S. aureus was associated with a four-fold reduction in gentamicin tolerance and a 25% increase in cellular respiration of both dispersed and adherent cells. Metabolome analysis found non-lethal dispersion reduced intracellular levels of L-ornithine and L-proline, with increased levels of cyclic nucleotides (p<0.05) in both liberated cells and the remaining biofilm-associated bacteria. These metabolomic changes have previously been shown to be associated with inactivation of the carbon catabolite repression mechanism, which is a key regulatory gatekeeper in the cellular resuscitation of dormant S. aureus cells. CONCLUSION. The metabolomic pipeline described in this study presents a valuable tool in the elucidation of molecular mechanistic pathways in biofilm pathogenesis. Kreb's cycle reactivation, through the carbon catabolite repression regulatory mechanism, has been shown to be associated with the reversal of biofilm-associated gentamicin tolerance. Understanding of the biosynthetic changes associated with the biofilm state will assist in the discovery of novel therapeutic targets in the management of biomaterial-related infections. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 91 - 91
1 Dec 2020
Hanberg P Bue M Öbrink-Hansen K Thomassen M S⊘balle K Stilling M
Full Access

Tourniquet is widely used in extremity surgery. In order to prevent surgical site infection, correct timing of antimicrobial prophylaxis and tourniquet inflation is important. We aimed to evaluate the time for which the free drug concentration of cefuroxime is maintained above the minimal inhibitory concentration (T>MIC) in subcutaneous tissue and calcaneal cancellous bone during three clinically relevant tourniquet application scenarios. Twenty-four female pigs were included. Microdialysis catheters were placed for sampling of cefuroxime concentrations bilaterally in calcaneal cancellous bone and subcutaneous tissue, and a tourniquet cuff was applied on a randomly picked leg of each pig. Subsequently, the pigs were randomized into three groups to receive 1.5 g of cefuroxime by intravenous injection 15 min prior to tourniquet inflation (Group A), 45 min prior to tourniquet inflation (Group B), and at the tourniquet release (Group C). The tourniquet duration was 90 min in all groups. Dialysates and venous blood samples were collected eight-hours postcefuroxime administration. Cefuroxime concentrations were maintained above the clinical breakpoint MIC for Staphylococcus aureus (4 μg/mL) in calcaneal cancellous bone and subcutaneous tissue throughout the 90 min tourniquet duration in Group A and B. Cefuroxime administration at tourniquet release (Group C) resulted in concentrations above 4 μg/mL for a minimum of 3.5 hours in the tissues on the tourniquet side. There were no significant differences in the T>MIC (4 μg/mL) in subcutaneous tissue or calcaneal cancellous bone between the three groups. However, Group A tended toward shorter T>MIC in tourniquet calcaneal cancellous bone compared to Group C (p=0.08). We conclude that administration of cefuroxime (1.5 g) in the 15–45 min window prior to tourniquet inflation resulted in sufficient calcaneal cancellous bone and subcutaneous tissue concentrations throughout the 90 min tourniquet application. If the target is to maintain postoperative cefuroxime concentrations above relevant MIC values, our results suggest that a second dose of cefuroxime should be administered at tourniquet release